
Extracting Certainty from Uncertainty:

Regret Bounded by Variation in Costs

Elad Hazan
IBM Almaden Research Center

650 Harry Rd
San Jose, CA 95120

ehazan@cs.princeton.edu

Satyen Kale∗

Yahoo! Research
4301 Great America Parkway

Santa Clara, CA 95054
skale@yahoo-inc.com

Abstract

Prediction from expert advice is a fundamental problem in machine learning. A major pillar of the
field is the existence of learning algorithms whose average loss approaches that of the best expert in
hindsight (in other words, whose average regret approaches zero). Traditionally the regret of online
algorithms was bounded in terms of the number of prediction rounds.

Cesa-Bianchi, Mansour and Stoltz [4] posed the question whether it is be possible to bound the regret
of an online algorithm by the variation of the observed costs. In this paper we resolve this question, and
prove such bounds in the fully adversarial setting, in two important online learning scenarios: prediction
from expert advice, and online linear optimization.

1 Introduction

A cornerstone of modern machine learning are algorithms for prediction from expert advice. As early as the
1950’s [7], in the context of sequential decision making, prediction algorithms were developed which, under
fully adversarial cost sequences, attain average cost approaching that of the best expert in hindsight.

To be more precise, consider a prediction setting in which an online learner has access to n experts.
Iteratively, the learner may chose the advice of any expert deterministically or randomly. After choosing a
course of action, an adversary reveals the cost of following the advice of the different experts, from which the
expected cost of the online learner is derived. The classic results in prediction theory (surveyed in Section
1.5) give algorithms which sequentially produce randomized decisions, such that the difference between the
(expected) cost of the algorithm and the best expert in hindsight grows like O(

√
T log n), where T is the

number of prediction iterations. This extra additive cost is known as the regret of the online learning
algorithm.

However, a priori it is not clear why online learning algorithms should have high regret (growing with the
number of iterations) in an unchanging environment. As an extreme example, consider a setting in which
there are only two experts. Suppose that the first expert always incurs cost 1, whereas the second expert
always incurs cost 1

2 . One would expect to “figure out” this pattern quickly, and focus on the second expert,

thus incurring a total cost that is at most T
2 plus at most a constant extra cost (irrespective of the number of

∗Work done while the author was at Microsoft Research.

1

rounds T), thus having only constant regret. However, any straightforward application of previously known
analyses of expert learning algorithms only gives a regret bound of Θ(

√
T) in this simple case (or very simple

variations of it).
More generally, the natural bound on the regret of a “good” learning algorithm should depend on variation

in the sequence of costs, rather than purely on the number of iterations. If the cost sequence has low variation,
we expect our algorithm to be able to perform better.

This intuition has a direct analog in the stochastic setting: here, the sequence of experts’ costs are
independently sampled from a distribution. In this situation, a natural bound on the rate of convergence
to the optimal expert is controlled by the variance of the distribution (low variance should imply faster
convergence). This was formalized by Cesa-Bianchi, Mansour and Stoltz [4], who assert that “proving such
a rate in the fully adversarial setting would be a fundamental result”.

In this paper we prove the first such regret bounds on online learning algorithms in two important
scenarios: prediction from expert advice, and the more general framework of online linear optimization. Our
algorithms have regret bounded by the variation of the cost sequence, in a manner that is made precise in
the following sections. Thus, our bounds are tighter than all previous bounds, and hence yield better bounds
on the applications of previous bounds (see, for example, the applications in [4]).

1.1 Online linear optimization

Online linear optimization [13] is a general framework for online learning which has received much attention
recently. In this framework the decision set is an arbitrary bounded, closed, convex set in Euclidean space
K ⊆ Rn rather than a fixed set of experts, and the costs are determined by adversarially constructed vectors,
f1, f2, . . . ∈ Rn, such that the cost of point x ∈ K is given by ft · x. The online learner iteratively chooses
a point in the convex set xt ∈ K. Then the cost vector ft is revealed and the cost ft · xt is incurred. The
performance of online learning algorithms is measured by the regret, which is defined as the difference in the
total cost of the sequence of points chosen by the algorithm, viz.

∑T
t=1 ft · xt, and the total cost of the least

cost fixed point in hindsight, viz. minx∈K

∑T
t=1 ft · x.

Several decision problems fit very naturally in this framework. For example, in the online shortest
path problem the online learner has to repeatedly choose a path in a given graph from a source node to
a destination node. Her cost is the total length of the path according to weights which are chosen by an
adversary. This problem can be cast as an online linear optimization problem, where the decision space is
the set of all distributions over paths in the graph connecting the source to the destination. Even though
this set sits in exponential dimensional Euclidean space, by thinking of a distribution over paths as a flow in
the graph, it is possible to efficiently represent the decision space as a polytope in R|E| (E denotes the set
of edges in the given graph), described by O(|E|) constraints, and translate the cost functions to this new
domain as well.

The general online linear optimization framework allows for efficient and natural algorithms based on
the gradient descent update rule coupled with Euclidean projections [11, 17]. In this paper, we consider
Zinkevich’s Lazy Projection algorithm [17]. This algorithm runs online gradient descent on an auxiliary
sequence of points and chooses the projections of these auxiliary points on the convex set in every iteration.

This algorithm was shown to have regret O(
√
T). We improve this regret bound to square-root of the

total variation of cost vectors (defined more precisely momentarily). The crucial geometric intuition which
allows us to prove regret bounds based on the variation of the cost sequence can be summarized by the
following intuitive fact: the distance between successive projections for the Lazy Projection algorithm is
directly related to the deviation of the current cost vector from the mean.

2

We now describe our bounds. Define the variation of the sequence of cost functions to be VART =∑T
t=1 ∥ft − µ⋆

T ∥2, where µ⋆
T = 1

T

∑T
t=1 ft is the mean of the sequence. Our analysis of the Lazy Projection

algorithm yields the following regret bound:

Regret ≤ O(
√
VART).

1.2 Prediction from expert advice

Prediction from expert advice can be cast as a special case of online linear optimization: the decision space
is the simplex of all distributions on n experts. The expectation operator provides a linear cost function
on the simplex via the costs of the experts. Hence, our result for online linear optimization already implies
variation bounds for regret in the case of prediction from expert advice.

However, this bound is suboptimal, as it depends on the variation of all experts rather than, say, the
maximum variation of a single expert. This issue is familiar to learning theorists: “Euclidean algorithms”
such as gradient descent attain performance which relates to the Euclidean norm of the cost functions (or
variations in our case). While this Euclidean flavor is optimal in certain cases (for example, when the
underlying convex set is the hypercube), for certain convex bodies such as the simplex, better performance
can be achieved. The multiplicative update algorithms such as EG [14] and FPL∗ [13] attain regret which is
proportional to O(R

√
T log n) where R is a bound on the ℓ∞ norm of the cost functions.

By analogy with the online linear optimization case, for a sequence of cost vectors f1, f2, . . . , fT ∈ Rn,
where ft(i) is the cost of expert i in the tth round, we would expect to be able to bound the regret of online
linear optimization over the simplex by something like O(

√
VAR∞

T log n), where

VAR∞
T = max

i∈n

{
T∑

t=1

|ft(i)− µ⋆
T (i)|2

}

is the maximum variation in costs amongst the different experts (as before, µ⋆
T (i) =

1
T

∑T
t=1 ft(i) is the mean

cost of the ith expert). In fact, our bound is even stronger,

Regret(T) = O
(√

VARmax
T log n

)
.

Here VARmax
T ≤ VAR∞

T , and is defined to be

VARmax
T = max

t≤T
{VARt(ℓt)} ,

where VARt(i) is the variation in costs of expert i up to the tth round, and ℓt is the best expert till the tth

round.
Whereas for the general online linear optimization we analyze the well-known Lazy Projection algorithm

and our results are novel by tighter analysis, for the case of prediction from expert advice we need to consider
a new algorithm. We can prove that existing variants of the multiplicative weights algorithms do not attain
the performance above, and instead consider a different variant of update rule, in which the distribution at
time t, denoted xt is defined to be

xt(i) ∝ exp

(
−η

t−1∑
τ=1

fτ (i)− 4η2
t−1∑
τ=1

(fτ (i)− µτ (i))
2

)
,

3

where η is a learning rate parameter and µt =
1
t

∑t−1
τ=1 fτ is the (approximate) mean cost vector at iteration

t. That is, the distribution over experts explicitly takes into account the variation in their costs. As far as
we know this is a new variant of the multiplicative update algorithms family, and it is necessary to include
this feature to prove variation bounds on the regret.

1.3 Discussion of the results

Cesa-Bianchi, Mansour and Stoltz [4] discussed desiderata for fundamental regret bounds for the expert
prediction problem: invariance under translation and rescaling of costs vectors. Invariance under translation
implies that the bounds depend only on the effective ranges of the cost vectors in each round, rather than
the absolute ranges (by effective range, we mean the maximum difference between the costs in any given
round). This is because of the following reason. If, in any given round, the costs of all experts are changed
by the same amount, the difference between the expected cost of the algorithm in that round and the cost of
any given expert remains the same as before. Our regret bounds enjoy this translation invariance property:
this is a direct consequence of the variation bound. This implies, for instance, that it doesn’t matter what
sign the costs are, and in fact our bounds are robust enough to handle mixed signs in costs.

Rescaling invariance implies that the bound continues to hold even if all the cost vectors are scaled by
the same factor. Again, our regret bounds enjoy rescaling invariance since the regret and the square-root
variation scale by the same factors.

We make crucial use of these invariance properties in our analysis; the invariance allows us to normalize
the cost vectors in ways that make them easier to reason about.

1.4 Stationary stochastic vs. adversarial settings

A point made by [4] is that the variation bounds on the regret essentially match the performance of a natural
algorithm in the stochastic setting in which the payoffs are generated by a stationary stochastic process. Let
us give a rough sketch of why this is true. Consider a setting of online linear optimization over the unit ball.
Suppose that the cost functions are generated by a stationary stochastic process, such that in each iteration
the cost function is independently sampled from a fixed distribution with some mean vector µ. For a long
enough sequence of cost functions drawn from this distribution, the best point in hindsight is essentially the
least cost point with respect to the cost vector µ.

Let µ̄ be the observed mean of samples. The natural algorithm uses µ̄ as proxy for the actual mean
and chooses its point with µ̄ as a cost vector, and this can be shown to be optimal. It is a standard
fact that the variance of µ̄ decreases inversely with the number of samples. Thus, if σ2 is the variance

of the distribution, then the variance of µ̄ after t iterations is σ2

t . The expected regret on iteration t is
proportional to the standard deviation σ√

t
, and thus the total regret of the optimal predictor is on the order

of
∑T

t=1
σ√
t
= O(

√
σ2T) = O(

√
VART).

Hence, the optimal achievable regret in this simple setting is proportional to square root of the total
variation. In the sequel we prove that the same regret (up to constant factors) can be achieved in the fully
adversarial setting, i.e. in a setting in which the cost functions are chosen completely adversarially. In
the stationary stochastic setting, the average cost converges to the average optimum cost at a speed that
depends on the variance of the distribution: lower variance implies faster convergence. Hence, by proving the
variation bounds on the regret, we give strong indication that online linear optimization in the adversarial
setting is as efficient as in the stationary stochastic setting.

4

1.5 A brief history of prediction

It is incredible that as early as the late fifties, Hannan [8] devised an efficient algorithm for prediction with
expert advice. Hannan’s algorithm proceeds by adding a perturbation to the costs of experts seen so far,
and choosing the expert with least cost (taking into account the perturbations). He proves that the regret
of an online player using his algorithm grows like O(

√
T) where T is the number of prediction iterations.

Since then, there has been much progress on the expert prediction problem, and its extensions to online
decision making: this includes the aforementioned influential multiplicative update family of algorithms
[15, 16, 6], Cover’s universal portfolio prediction problem [5] and the extensions of Follow-The-Perturbed-
Leader [13] to online optimization and complex decision problems such as online shortest paths. The machine
learning community has extended these fundamental results into a beautiful theory of general prediction using
Bregman divergences and generalized projections (in order to do justice to the numerous contributors we
refer the reader to the comprehensive book Cesa-Bianchi and Lugosi [3]). This work refined upon the basic
regret bound of O(

√
T). This refinement, however, deals with the constants multiplying the

√
T term.

Freund and Schapire [6] showed that a Multiplicative Weights algorithm based on the Weighted Majority

algorithm attains regret bounds of O

(√
R
∑T

t=1 ft(i
∗) log n

)
, where it is assumed that all costs are in the

range [0, R], and i∗ is the best expert in hindsight. In the case when the costs lie in the range [−R,R],
Allenberg-Neeman and Neeman [1] showed that there is an expert i such that the regret can be bounded

by O

(√
R
∑T

t=1 |ft(i)| log n
)
. Most recently Cesa-Bianchi, Mansour and Stoltz [4] gave the first second-

order regret bounds: they proved a bound of O
(√

Amax
T log n

)
where Amax

T = maxt≤T {
∑t

τ=1 fτ (ℓt)
2} is the

maximum, over all the time periods t, of the sum of squares of losses up to time t of the best expert at time
t. They suggest, and indeed as we argue in the previous section it makes intuitive sense, that it should be
possible to get a bound that scales as

√
VARmax

T .
In this paper we prove their conjecture to be correct, in effect providing the optimal regret bounds up to

constant factors.

2 Notation and background

The following definitions and derivations may be familiar to experts in learning theory, who may wish to
proceed directly to the next section.

In the online linear optimization problem, the decision space is a closed, bounded, convex set K ∈ Rn,
and we are sequentially given a series of linear cost functions ft : K → R for t = 1, 2, With some abuse
of notation, we also write the functions as ft(x) = ft · x for some vector ft ∈ Rn.

The algorithm iteratively produces a point xt ∈ K in every round t, without knowledge of ft (but using
the past sequence of cost functions), and incurs the cost ft(xt). The regret at time T is defined to be

Regret(f1, f2, . . . , fT) :=

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

Usually, we will drop the cost vectors from the regret notation when they are clear from context. For
convenience, we define f0 = 0, and let Ft =

∑t−1
τ=0 fτ .

We proceed to describe a widely used algorithmic technique in online learning, on the basis of which we
will derive our algorithms.

5

Since our goal is to get regret bounded by the variation in the cost sequence, intuitively, a Follow-The-
Leader (FTL) type algorithm, which always chooses the best point so far to use in the next round, should
perform well if the variation is low. The FTL algorithm by itself doesn’t usually guarantee low regret,
mainly because it is inherently unstable: it may swing wildly from one point to another from one iteration
to the next at very little provocation (for example, consider the case of expert prediction with 2 experts for
the following sequence of cost vectors: (1/2, 0), (0, 1), (1, 0), (0, 1), . . .). To make it stable, we add a strictly
convex regularization function R(x) before computing the leader. The generic algorithm which results is
shown below, and is called Follow The Regularized Leader (FTRL):

Algorithm 1 FTRL

1: Let K be a convex set
2: Input: parameter η > 0, regularization function R(x).
3: for t = 1 to T do
4: Use xt , argminx∈K

(
Ft · x+ 1

ηR(x)
)
,

5: Receive ft
6: end for

A crucial observation regarding the FTRL algorithm which we use in the analysis is its equivalence to
the following algorithm, which we call Follow the Lazy Projected Leader (FLPL). This algorithm maintains
an auxiliary sequence of points which are updated using a gradient descent type algorithm, which are then
projected into the convex set using the Bregman divergence BR defined by R:

BR(x, y) = R(x)−R(y)−∇R(y) · (x− y).

The algorithm as it is given has an implicit update, whose implementation we ignore for now (in this paper
we are only concerned with the Euclidean and Relative Entropy divergences, in which case the updates are
efficient).

Algorithm 2 FLPL

1: Let K be a convex set
2: Input: parameter η > 0, regularizer function R(x).
3: for t = 1 to T do
4: If t = 1, choose y1 such that ∇R(y1) = 0.
5: If t > 1, choose yt such that ∇R(yt) = ∇R(yt−1)− ηft−1.
6: Project according to BR:

xt = arg min
x∈K

BR(x, yt)

7: end for

In fact, the two algorithms above are identical. This is perhaps not surprising, given what is known about
the so called “mirror-descent” algorithm (e.g. [3]). Nevertheless this fact is crucial for our later derivations,
and we did not find this precise statement elsewhere, hence we include a short proof.

Lemma 1. The two algorithms above produce identical predictions, i.e.

arg min
x∈K

(
Ft · x+

1

η
R(x)

)
= arg min

x∈K
BR(x, yt).

6

Proof. First, let us observe that the unconstrained optimum x∗ = argminx∈Rn

(
Ft · x+ 1

ηR(x)
)
satisfies

Ft +
1

η
∇R(x∗) = 0.

By induction, the above equation is also satisfied for yt. Since R(x) is assumed to be strictly convex,
there is only one solution for the above equation and thus yt = x∗. Hence,

BR(x, yt) = R(x)−R(yt)−∇R(yt) · (x− yt)

= R(x)−R(yt) + ηFt · (x− yt).

Since R(yt) and Ft · yt are constants (i.e. independent of x), BR(x, yt) is minimized at the point x that
minimizes R(x) + ηFt · x, which implies that

arg min
x∈K

BR(x, yt) = arg min
x∈K

(
Ft · x+

1

η
R(x)

)
.

One important property which follows from the first characterization of xt is the following standard
bound on the regret, due to Kalai and Vempala [13], called the Follow-The-Leader/Be-The-Leader (FTL-
BTL) inequality:

Lemma 2. The regret of the FTRL (or equivalently, the FLPL) algorithm is bounded as:

Regret ≤
T∑

t=1

ft · (xt − xt+1) +
1

η
[max
x∈K

R(x)−R(x0)].

Proof. For convenience of notation, define the period 0 cost function f0 : K → R as f0(x) =
1
ηR(x). Also,

with some abuse of notation, we use the notation ft(x) to also mean the linear functions defined by the
vector ft, viz. ft(x) = ft · x. Then the FTRL algorithm can be succinctly described as choosing the points

xt = argminx∈K

∑t−1
τ=0 ft(x).

We prove by induction that for any t ≥ 0, we have

t∑
τ=0

fτ (xτ+1) ≤ min
x∈K

t∑
τ=0

ft(x),

whence the regret bound follows because if x∗ = argminx∈K

∑T
τ=1 fτ (x), we have

Regret =
T∑

τ=1

fτ (xτ)− fτ (x
∗) ≤

T∑
τ=1

[fτ (xτ)− fτ (xτ+1)] + f0(x
∗)− f0(x0).

The statement for t = 0 is obvious since x1 = argminx∈K f0(x). So assume the statement is true for
t ≥ 0, and we now proceed to prove it for t+ 1. We have

t+1∑
τ=0

fτ (xτ+1) ≤ min
x∈K

t∑
τ=0

ft(x) + ft(xt+1),

7

by induction hypothesis. Furthermore, we have

min
x∈K

t∑
τ=0

ft(x) + ft(xt+1) ≤
t∑

τ=0

ft(xt+1) + ft(xt+1) = min
x∈K

t∑
τ=0

ft(x).

Thus, the induction is complete.

3 Algorithms and main results

In this section we describe the algorithms for which we prove variation bounds, and state formally their
performance guarantees.

3.1 Online linear optimization

We start by describing our result for online linear optimization. Following the notation defined in the previous
section, we assume that K ⊆ Bn, where Bn is the unit ball in Rn, and that 0 ∈ K. This is without loss of
generality, and can be assumed by a suitable scaling and translation of K. Scaling K down by its diameter
D makes the diameter 1 and scales the regret down by D as well, and changing the coordinate system so
that K contains the origin doesn’t change the regret bound. Here, we are making use of the translation
invariance of our regret bounds.

We also assume that for all t, ∥ft∥ ≤ 1. If we have some other bound R on ∥ft∥, then we scale down the
ft’s by R to get new cost vectors f ′

t such that ∥f ′
t∥ ≤ 1. We can then run the algorithm pretending as if f ′

t

is the sequence of cost vectors.
Define the variation of sequence of cost vectors f1, . . . , fT to be

VART (f1, f2, . . . , fT) =
T∑

t=1

∥ft − µ∥2,

where µ = 1
T

∑T
t=1 ft is the vector that minimizes the above expression. Usually, we will drop the cost

vectors from the notation for the variation, and refer to it simply as VART , when the cost vectors are clear
from context. To see that scaling has no effect on the regret bound, note that

VART (f
′
1, . . . , f

′
T) =

1

R2
VART (f1, . . . , fT),

and

Regret(f ′
1, . . . , f

′
T) =

1

R
Regret(f1, . . . , fT).

Thus, if Regret(f ′
1, . . . , f

′
T) = O(

√
VART (f ′

1, . . . , f
′
T)), then Regret(f1, . . . , fT) = O(

√
VART (f1, . . . , fT)).

This is exactly the rescaling invariance discussed earlier.
For ease of notation, we define f0 = 0, and for any t > 0, let Ft =

∑t−1
τ=0 fτ and µt =

1
tFt =

1
t

∑t−1
τ=0 fτ . We

instantiate the FTRL/FLPL algorithm with the regularization function R(x) = 1
2∥x∥

2. This regularization
was considered many times before, and the only change here is to choose a different “learning rate” η, which
will enable us to prove the novel regret bounds. Since ∇R(x) = x for this regularization, the algorithm that
results is:

8

Algorithm 3 Lazy Projection

1: Let K be a convex set
2: Input: an upper bound estimate Q on VART . Set η = min

{
2√
Q
, 1
6

}
.

3: for t = 1 to T do
4: If t = 1, choose y1 = 0.
5: If t > 1, let yt = yt−1 − ηft−1.
6: Use xt = argminx∈K ∥x− yt∥.
7: end for

Our main theorem with respect to online linear optimization is:

Theorem 3. Let ft, for t = 1, 2, . . . , T , be a sequence of cost vectors such that ∥ft∥ ≤ 1. If the upper bound
estimate Q on VART is accurate, then the regret of the the Lazy Projection algorithm is bounded by

Regret ≤ min{15
√

Q, 150}.

The constants in the bound are not optimized. Similar bounds for the case in which the total variation
VART is not known in advance are given in subsection 3.3.

3.2 Prediction from expert advice

In the expert learning problem, we assume that we have access to n experts. In each round t, we choose
a distribution xt over the experts and choose an expert from it. Then, we obtain a cost vector ft which
specifies a cost ft(i) for every expert, and we incur the cost of the chosen expert. Our goal is to bound the

total expected cost of the algorithm (i.e.
∑T

t=1 ft · xt) relative to the total cost of the expert with minimum

total cost in hindsight (i.e. mini
∑T

t=1 ft(i)).
For simplicity, we assume that all costs ft(i) ∈ [0, 1]. This can be assumed without loss of generality

from the rescaling and translation invariance of our final regret bounds. In general, all we need is a bound
R on the maximum value of ft(i) − ft(j) over all rounds and all pairs of experts i, j. In each round, the
algorithm can be run by scaling the costs of all experts down by R, and then subtracting out the minimum
cost in each round. As in the case of online linear optimization, this scaling and translation doesn’t affect
the square-root variation bound on the regret.

As mentioned before, this setting is a special case of the online linear optimization where the domain K
is the simplex (denoted ∆) of distributions over the experts. To design an algorithm for this special case, we
need a different regularization function, ne(x) =

∑
i xi lnxi − xi.The Bregman divergence which arises from

this is the un-normalized relative entropy (c.f Herbster and Warmuth [12]), defined on Rn
+, called as follows:

Dne(x, y) :=
∑
i

yi · ln
yi
xi

+ yi − xi.

Note that when x, y ∈ ∆, Dne(x, y) is the relative entropy between x and y, and ne(x) is the negative
entropy of x. The Bregman projection on the simplex with the un-normalized relative entropy divergence is
implemented simply by scaling all the coordinates so that they sum to 1.

A significant twist on the usual multiplicative weights algorithm is that we modify the cost functions to
explicitly take into account the variation: we actually run the FTRL/FLPL algorithm on the sequence of
cost vectors f̃1, f̃2, . . . where

f̃t(i) =
[
ft(i) + 4η(ft(i)− µt(i))

2
]
,

9

where µt =
1
t

∑t−1
τ=0 fτ . As before, we use the convention that f0 = 0.

For ease of notation, for a vector x, we define the vector x2 as x2(i) = x(i)2. Thus, we can write f̃t
compactly as f̃t = ft + 4η(ft − µt)

2. The algorithm which results is given below:

Algorithm 4 Variation MW

1: Input: upper bound estimate Q on VARmax
T . Set η = min

{√
log(n)
4Q , 1

10

}
.

2: for t = 1 to T do
3: If t = 1, choose y1 = 1⃗, the all 1’s vector.
4: If t > 1, let yt(i) = yt−1(i) exp(−ηf̃t−1(i)), where f̃t−1(i) = ft−1(i) + 4η(ft−1(i)− µt−1(i))

2.
5: Use xt = yt/Zt, where Zt =

∑
i yt(i).

6: end for

Define
VARmax

T = max
t≤T
{VARt(ℓt)},

where ℓt is the best expert till the t
th round, and VARt(i) =

∑t
τ=1(ft(i)−µ⋆

t (i))
2 where µ⋆

t (i) =
1
t

∑t
τ=1 fτ (i)

is the mean cost of the ith expert till the tth round. Our main result concerning prediction from expert advice
is the following:

Theorem 4. Let ft, for t = 1, 2, . . . , T , be a sequence of cost vectors to the experts so that ft(i) ∈ [0, 1].
If the upper bound estimate Q on VARmax

T is accurate, then the regret of the Variation MW algorithm is
bounded by

Regret ≤ 8
√
Q log(n) + 10 log(n).

Note that the additive log(n) term is inherent to expert learning algorithms and also appears in all
previously known regret bounds. Again, one can obtain the same bounds up to constants even in the case
in which VARmax

T is not known ahead of time. This is detailed in the next subsection.

3.3 Bounds which hold uniformly over time

Both of our main theorems for the settings of online linear optimization and prediction from expert advice
have analogues to the case in which the variation is not known a priori. The generalization is a straightforward
application of a technique called “the doubling trick”, which we include here for completeness. It was applied
previously, for example, in [2].

First we introduce this technique in a very general form, so as to derive generalizations to both our
previous theorems in a unified manner. Let VT = V (f1, ..., fT) be a monotone non-decreasing function of a
sequence of cost functions (for example, the number of prediction periods T , or the two notions of variation
from previous sections). We assume without loss of generality that VT can grow by at most 1 in every
iteration. Consider an online prediction setting in which the predictor has access to an online algorithm
called Alg, which, when supplied with an upper bound estimate Q on V guarantees the following regret
bound:

Regret ≤ c1
√

Q+ c2.

Here, c1 and c2 are constants.

10

Algorithm 5 Generic doubling trick

1: Input: regret minimizing algorithm Alg.
2: Initialize estimate Q = 16.
3: for t = 1, 2, . . . do
4: Apply Alg with estimate Q on the stream of cost functions, monitor value Vt.
5: if Vt ≥ Q− 1 then
6: Set Q← Q× 4
7: Restart Alg with new estimate of Q.
8: end if
9: end for

Lemma 5. Assume VT ≥ 4. Applying Algorithm 5, the regret of the resulting algorithm for any sequence of
cost functions whose magnitude is bounded by one is bounded by

Regret ≤ 8c1
√
VT + 2c2 log(VT).

Proof. Imagine Algorithm 5 as running in phases i = 1, 2, . . ., where in phase i, Alg is applied with the
estimate 4i+1. Phase i ends as soon as Vt becomes at least 4i+1−1. Clearly, there are at most ⌊log4(VT)⌋+1
phases in all. At the end of the ith phase the function Vt can be bounded by Vt−1 + 1 < 4i+1, and thus
by the assumption on Alg, the regret of the online algorithm is bounded by c1

√
4i+1 + c2 = c1 · 2i+1 + c2.

Thus, the total regret is bounded by:

⌊log4 Q⌋+1∑
i=1

c1 · 2i+1 + c2 ≤ 8c1
√
VT + 2c2 log4(VT).

Here, we use the fact that since VT ≥ 4, we have ⌊log4(VT)⌋+ 1 ≤ 2 log4(VT).

As a corollary of this lemma and our main Theorems 3 and 4 we have

Theorem 6. Let ft, for t = 1, 2, . . ., be a sequence of cost vectors to the experts so that ∥ft∥ ≤ 1. There
exists an algorithm such that for all time steps T the regret is bounded by

Regret ≤ min{120
√
VART , 450}.

Proof. This theorem doesn’t follow directly from Lemma 5 because of the min function in the regret bound
of Theorem 3. However, we can still apply the same generic algorithm 5, and after the third phase, the
variation is large enough that the regret can be uniformly bounded (via Theorem 3) as

Regret ≤ 15
√

Q,

at which point we can apply Lemma 5. The constant regret of 150 in the first 3 phases accounts for the 450
term in the bound.

Theorem 7. Let ft, for t = 1, 2, . . . , T , be a sequence of cost vectors to the experts so that ft(i) ∈ [0, 1].
There exists an algorithm such that for all time steps T the regret is bounded by

Regret ≤ 64
√
VARmax

T log(n) + 20 log(n) logVARmax
T .

Proof. The theorem follows by direct application of Lemma 5.

11

4 Analysis of the Lazy Projection algorithm

In this section we prove Theorem 3. The proof uses the dual characterization of the FTRL type algorithms
introduced previously: on one hand we follow the standard methodology of the Follow-The-Leader type
algorithms, bounding the regret by distance between consecutive predictions. On the other hand we use the
fact that these predictions are projections of aggregate cost functions, and analyze the distance between suc-
cessive projections. In fact, this latter analysis is the main crux of the proof - we refine previous approaches
by giving a tighter bound on this distance which is based on simple geometrical intuition. Recall Theorem 3:

Theorem 3. Let ft, for t = 1, 2, . . . , T , be a sequence of cost vectors to the experts so that ∥ft∥ ≤ 1.
If the upper bound estimate Q on VART is accurate, then the regret of the the Lazy Projection algorithm is
bounded by

Regret ≤ min{15
√
Q, 150}.

Proof. In order to aid understanding, we present the proof as a series of lemmas. We defer the proofs of the
lemmas to after the present proof. We start by invoking the FTL-BTL inequality (Lemma 2) to obtain the
following bound:

Lemma 8.

Regret ≤
T∑

t=1

(ft − µt) · (xt − xt+1) +
1

η
.

We proceed to relate the distance between successive projections to the variation in the cost vectors.
This lemma is the main crux of the proof, and is based on the geometric intuition depicted in Figure 1. The
idea in the proof is that if the sequence of cost vectors has low variation, then the cumulative cost vector
Ft is far away from the convex body, and in such a case, the distance between successive projections can be
bounded in terms of the length of the component of ft orthogonal to Ft, which can in turn be bounded in
terms of ∥ft − µt∥, since µt =

1
tFt.

Lemma 9. For all t, we have:

∥xt − xt+1∥ ≤
3η

2
∥ft − µt∥+

2

t
.

For ease of notation, we define a parameter of the cost vectors which will be further used in the analysis:

ρ(T) :=
T∑

t=1

1

t
∥ft − µt∥.

This parameter measures the variation of the cost vectors. Using the Cauchy-Schwartz inequality and
Lemma 9 we get

(ft − µt) · (xt − xt+1)

≤ ∥ft − µt∥ ·
[
3η

2
∥ft − µt∥+

2

t

]
≤ 3η

2
∥ft − µt∥2 +

2∥ft − µt∥
t

.

12

θ

yt

−ηft

yt+1

K

0

xt+1

xt

Figure 1: The distance between successive projections, viz. ∥xt − xt+1∥, is bounded by the length of the
component of −ηft orthogonal to the yt − xt.

Plugging this into the regret bound of Lemma 8 gives us the following bound:

Regret ≤ 3η

2

T∑
t=1

∥ft − µt∥2 + 2ρ(T) +
1

η
. (1)

To proceed from here, we use the following Lemma (which, curiously enough, is proved using the analysis of
an online learning algorithm that has nothing to do with the present setting!):

Lemma 10. For any vector µ, we have:

T∑
t=1

∥ft − µt∥2 ≤
T∑

t=1

∥ft − µ∥2 + 4ρ(T).

Plugging into equation (1) we get that, for any vector µ (and in particular, for µ = µ⋆
T := 1

T

∑T
t=1 ft),

Regret ≤ 3η

2

T∑
t=1

∥ft − µ∥2 + (2 + 6η)ρ(T) +
1

η
.

We can bound ρ(T) as follows:

Lemma 11. For any vector µ, we have:

ρ(T) ≤ 3

√√√√ T∑
t=1

∥ft − µ∥2.

13

Thus, if the upper bound Q on VART holds, we have

Regret ≤ 3η

2
Q+ (6 + 18η)

√
Q+

1

η
.

Finally, by setting η = min{2/
√
Q, 1/6}, the proof is complete.

We now give the omitted proofs of Lemmas used in the above proof.

Proof. (Lemma 8)
By definition of xt, we know that

Ft · xt +
1

2η
∥xt∥2 ≤ Ft · xt+1 +

1

2η
∥xt+1∥2.

Recall that µt = Ft/t. Hence,

T∑
t=1

µt · (xt − xt+1) =
T∑

t=1

Ft

t
· (xt − xt+1)

≤
T∑

t=1

1

t
· 1

2η
(∥xt+1∥2 − ∥xt∥2)

≤ 1

2η

T∑
t=2

∥xt∥2 ·
(

1

t− 1
− 1

t

)
+
∥xT+1∥2

2ηT

≤ 1

2η
.

Here, we use the fact that ∥xt∥ ≤ 1. The stated bound then follows from Lemma 2.

Proof. (Lemma 9)
We split up the analysis in two cases:

1. ∥Ft∥ ≤ 2/η: Assume that ∥Ft∥ > 0. Since xt and xt+1 are the projections of yt and yt+1 respectively
on K, by the Projection Lemma 12 we have

∥xt − xt+1∥ ≤ ∥yt − yt+1∥
= η∥ft∥
≤ η∥ft − µt∥+ η∥µt∥

≤ η∥ft − µt∥+
2∥µt∥
∥Ft∥

= η∥ft − µt∥+
2

t
.

If ∥Ft∥ = 0, then the Projection Lemma 12 implies that ∥xt − xt+1∥ ≤ η∥ft∥ = η∥ft − µt∥, so the
stated bound still holds.

14

2. ∥Ft∥ ≥ 2/η: we first show the following bound:

∥xt − xt+1∥ ≤ η∥ft − µt∥+ ∥ft∥/∥Ft∥. (2)

Consider two unit vectors: u in the direction yt− xt, and v in the direction yt. We claim that the sine
of the angle θ between these vectors is at most 1/η∥Ft∥. To see this, consider the triangle formed by
the points 0, xt, yt. We are interested in the angle θ at vertex yt (see Figure 1). Let ϑ be the angle at
xt. By the law of sines, we have

sin(θ) =
∥xt∥ sin(ϑ)
∥yt∥

≤ 1

∥yt∥
=

1

η∥Ft∥
,

where the inequality follows because ∥xt∥ ≤ 1 and sin(ϑ) ≤ 1.

Now, we consider the components of ft along u and v: define fu
t = (ft ·u)u and fv

t = (ft ·v)v. Consider
the point yt − ηfu

t . Since it lies on the line joining yt to xt, its projection on K is also xt. Here, we
use the fact that yt − ηfu

t is outside K: this is because

∥yt − ηfu
t ∥ ≥ ∥yt∥ − η∥fu

t ∥ ≥ η∥Ft∥ − η ≥ 1.

By the Projection Lemma 12, we have

∥xt+1 − xt∥ ≤ ∥yt+1 − (yt − ηfu
t)∥ = η∥ft − fu

t ∥. (3)

Let x be the projection of fv
t on the subspace spanned by u (i.e. x = (fv

t · u)u). Then, since fu
t is the

projection of ft in the subspace spanned by u, it is the closest point to ft in the subspace, and since x
is also in the subspace, we have

∥ft − fu
t ∥ ≤ ∥ft − x∥
≤ ∥ft − fv

t ∥+ ∥fv
t − x∥

= ∥ft − fv
t ∥+ ∥fv

t ∥ sin(θ)
≤ ∥ft − fv

t ∥+ ∥ft∥/η∥Ft∥
≤ ∥ft − µt∥+ ∥ft∥/η∥Ft∥.

The last inequality follows because fv
t is the closest point to ft in the subspace spanned by v, and µt

is a point in this subspace. Plugging this bound into (3), we get (2).

Now, we have the following bound on ∥ft∥/∥Ft∥:

∥ft∥
∥Ft∥

≤ ∥ft − µt∥+ ∥µt∥
∥Ft∥

≤ η

2
∥ft − µt∥+

1

t
. (4)

Plugging (4) into (2), we get the required bound.

Proof. (Lemma 10)

We may assume that ∥µ∥ ≤ 1, since the right hand side is minimized at µ = 1
T

∑T
t=1 ft. The statement of

the lemma is essentially bounding the regret of the FTL algorithm played on the sequence of cost functions

15

ct(x) = ∥x− ft∥2, for t = 0, 1, 2, . . . , T , with the convex domain the unit ball Bn. This is because the leader
in round t is

arg min
x∈Bn

{
t−1∑
τ=0

∥x− fτ∥2} =
1

t

t−1∑
τ=0

fτ = µt.

We assume here that the first point played by the algorithm is 0. Then by the FTL-BTL inequality
(Lemma 2), the regret of the FTL algorithm can be bounded as (here, the regularization function R(x)
is null):

Regret ≤ c0(0)− c0(µ1) +
T∑

t=1

ct(µt)− ct(µt+1)

≤
T∑

t=1

∇ct(µt) · (µt − µt+1) (∵ ct is convex)

≤
T∑

t=1

∥∇ct(µt)∥∥µt − µt+1∥

≤
T∑

t=1

∥2(ft − µt)∥ · ∥µt − µt+1∥.

Now, we have

∥µt − µt+1∥ =

∥∥∥∥µt −
tµt + ft
t+ 1

∥∥∥∥ ≤ 1

t+ 1
(∥µt∥+ ∥ft∥) ≤

2

t
.

Thus, the regret is bounded by 4ρ(T).

Proof. (Lemma 11) We may assume without loss of generality that µ = 0: using the vectors ft−µ instead
of ft doesn’t change the value of ρ(T). We have

ρ(T) =

T∑
t=1

1

t
∥ft − Ft/t∥

≤
T∑

t=1

1

t

[
∥ft∥+

1

t
∥Ft∥

]

≤
T∑

t=1

[
1

t
∥ft∥+

1

t2

t−1∑
τ=1

∥fτ∥

]

≤
T∑

t=1

2

t
∥ft∥

(
∵

T∑
τ=t+1

1

t2
≤ 1

t

)

≤

√√√√[T∑
t=1

∥ft∥2
][

T∑
t=1

4

t2

]
(Cauchy-Schwarz)

≤ 3

√√√√ T∑
t=1

∥ft∥2,

16

as required.

The projection lemma which follows is a well-known fact from convex optimization theory. We include
the proof for completeness.

Lemma 12 (Projection lemma). Let K be a convex set, and let x and y be any two points. Let x′ and y′ be
their respective projections on K. Then

∥x′ − y′∥ ≤ ∥x− y∥.

Proof. Assume that x′ ̸= y′, otherwise the inequality is trivial. By the properties of projections on convex
sets, we have

(x− x′) · (y′ − x′) ≤ 0 and (y − y′) · (x′ − y′) ≤ 0. (5)

Consider the line ℓ passing through x′ and y′, and consider the projections x′′ and y′′ of x and y
respectively on this line. The inequalities (5) imply that along ℓ, the order of the points is (x′′, x′, y′, y′′).
Thus, we have

∥x′ − y′∥ ≤ ∥x′′ − y′′∥ ≤ ∥x− y∥,

where the last inequality follows because the projection of any line segment on any line is no longer than the
segment itself.

5 Analysis of the Variation MW algorithm

The analysis of the Variation MW is straightforward, though complicated somewhat due to heavy algebraic
manipulations. We outline the main ideas in the analysis now. Our starting point is Lemma 13, a well-known
bound which relates the regret of the Multiplicative Weights algorithm with the expected squared losses of
the experts (the expectation being taken under the distributions generated by the algorithm). Next, we
make crucial use of the fact that the Multiplicative Weighs algorithm puts exponentially higher weight on
experts with lower cost than those with higher costs. Since we explicitly factor in the variation in the costs
of each expert before computing their exponential weights, eventually the algorithm starts to concentrate all
the weight on experts with lower cost and lower variation. This yields the desired regret bound.

We now describe a regret bound on the performance of the Multiplicative Weights algorithm. This bound
is well-known (see, for e.g. [4, 2]), we include the short proof for completeness.

Lemma 13. Suppose in round t of the expert prediction problem, expert i incurs cost gt(i), where |gt(i)| ≤M .
Consider the Multiplicative Weights algorithm, that in round t chooses expert i with probability xt(i) ∝
exp(−η

∑t−1
τ=1 gτ (i)). Then, if η ≤ 1/M ,

Regret ≤ η
T∑

t=1

g2t · xt +
log n

η
.

Proof. Let wt(i) = exp(−η
∑t−1

τ=1 gτ (i)), and let Zt =
∑

i wt(i). Then the distribution on the experts at time
t is exactly wt/Zt. We think of Zt as a potential function, and track how it changes over time. Initially,

17

Z1 = n. We have

Zt+1 =
∑
i

wt(i) exp(−ηgt(i))

≤
∑
i

wt(i)(1− ηgt(i) + η2gt(i)
2) (6)

= Zt(1− η(gt · xt) + η2(g2t · xt))

≤ Zt exp(−η(gt · xt) + η2(g2t · xt)).

In (6), we used the fact that for |x| ≤ 1, we have exp(x) ≤ 1 + x+ x2. Thus, by induction, we have

ZT+1 ≤ n exp

(
−η

T∑
t=1

(gt · xt) + η2
T∑

t=1

(g2t · xt)

)
.

Also, for any expert i we have the bound

ZT+1 ≥ wT+1(i) = exp

(
−η

T∑
τ=1

gτ (i)

)
.

Putting these two inequalities together, taking logarithms and simplifying, we get the desired bound on the
regret.

For our analysis, we use a slightly different notion of variation of the experts’ costs: for any round t and
any expert i, define

Qt(i) =
t−1∑
τ=1

(fτ (i)− µτ (i))
2.

Recall that the usual definition of variation of an experts cost up to the tth round is simply

VARt(i) =

t∑
τ=1

(fτ (i)− µ⋆
t (i))

2,

where µ⋆
t (i) = 1

t

∑t
τ=1 ft(i). But it is easily seen from (the 1 dimensional version of) Lemmas 10 and 11

that
Qt(i) ≤ VARt(i) + 12

√
VARt(i). (7)

and thus Qt(i) can serve as a proxy for the true variation (up to constant factors).
Recall that ℓt is the best expert till time t, and VARmax

T = maxt≤T {VARt(ℓt)}. Define Qmax
T =

maxt≤T Qt(ℓt). Then, we have that
Qmax

T ≤ 4VARmax
T ,

assuming that VARmax
T ≥ 16. Then, the following Lemma combined with inequality (7) implies Theorem 4.

Lemma 14. Let ft, for t = 1, 2, . . . , T , be a sequence of cost vectors to the experts so that ft(i) ∈ [0, 1].
Let ℓt be the best expert at time t, and let Q be an upper bound on Qmax

T = maxt{Qt(ℓt)}. Then setting

η = min{
√

log(n)/4Q, 1/10}, the regret of the Variation MW algorithm is bounded by

Regret ≤ 4
√
Q log(n) + 10 log(n).

18

Proof. Define gt = f̃t − αt1⃗, where αt = µt(ℓt) +
4η
t Qt(ℓt), and 1⃗ is the all 1’s vector. Note that for any i,

exp

(
−η

t−1∑
τ=1

gτ (i)

)
=

1

Z
exp

(
−η

t−1∑
τ=1

f̃τ (i)

)
,

where Z is a scaling constant independent of i. Hence, scaling either the weights exp(−η
∑t−1

τ=1 gτ (i)) or the

weights exp(−η
∑t−1

τ=1 f̃τ (i)) to sum up to 1 yields the same distribution, viz. xt.
Since we assumed that the ft(i) ∈ [0, 1], we conclude that gt(i) ∈ [−2, 2] (since 4η ≤ 1). Applying

Lemma 13 to the sequence of cost vectors gt, we get the following regret bound, where ℓT is the final best
expert:

T∑
t=1

f̃t · xt −
T∑

t=1

f̃t(ℓT) ≤ η
T∑

t=1

g2t · xt +
log n

η
.

Here, we used the fact that the
∑T

t=1 αt1⃗ · xt =
∑T

t=1 αt. Simplifying using the definition of f̃t, we get

T∑
t=1

ft · xt −
T∑

t=1

ft(ℓT) ≤ η

T∑
t=1

g2t · xt +
log n

η
− 4η

T∑
t=1

(ft − µt)
2 · xt + 4η

T∑
t=1

(ft(ℓT)− µt(ℓT))
2

≤ η

T∑
t=1

[g2t − 4(ft − µt)
2] · xt + 4η(Q+ 1) +

log n

η
, (8)

since
∑T

t=1(ft(ℓT)− µt(ℓT))
2 ≤ QT (ℓT) + 1 ≤ Q+ 1.

The following lemma bounds the first term in (8). The proof is a straightforward calculation, and so we
defer its proof to after the present proof.

Lemma 15. If η ≤ 1/10, then for any i, we have

g2t (i)− 4(ft(i)− µt(i))
2 ≤ 2(µt(i)− αt)

2.

Plugging this bound into (8), we get that

Regret ≤ 2η

T∑
t=1

(µt − αt1⃗)
2 · xt +

logn

η
+ 4η(Q+ 1). (9)

We now proceed to bound
∑T

t=1(µt − αt1⃗)
2 · xt. We bound each term in the summation separately. For

any t ≤ log n
η , we simply bound |µt(i)− αt| ≤ 2 and hence we have (µt − αt1⃗)

2 · xt ≤ 2.

Now let t > logn
η . For convenience of notation, we drop the subscript t from xt(i) and refer to them as

x(i).

(µt − αt1⃗)
2 · x =

∑
i:µt(i)≤αt

(µt(i)− αt)
2x(i) +

∑
i:µt(i)>αt

(µt(i)− αt)
2x(i)

≤
∑

i:µt(i)≤αt

[
4η

t
Qt(ℓt)

]2
x(i) +

∑
i:µt(i)>αt

(µt(i)− αt)
2x(i) (10)

≤
[
4η

t
Qt(ℓt)

]2
+

∑
i:µt(i)>αt

(µt(i)− αt)
2x(i) (11)

19

Here, (10) follows because when µt(i) ≤ αt = µt(ℓt) +
4η
t Qt(ℓt), we have |µt − αt| ≤ 4η

t Qt(ℓt) since µt(i) ≥
µt(ℓt).

We now bound each term of (11) separately. The proof of the following lemma is a straightforward
calculation and we defer it to after the present proof.

Lemma 16. The first term of (11), summed over all t, can be bounded as:

T∑
t=1

[
4η

t
Qt(ℓt)

]2
≤ 32η2Q.

The hard part is to bound the second term of (11). We now proceed to do so. The intuition in the
following analysis is that the Variation MW algorithm tends to concentrate exponentially high weight on the
experts that have low cost.

Let I be the index set of all i such that µt(i) > αt. Note that ℓt /∈ I. Now, we have x(i) ∝ exp(−ηtµt(i)−
4η2Qt(i)), and thus x(ℓt) ∝ exp(−ηtαt). Thus, x(i) can be written as:

x(i) =
exp(−ηtµt(i)− 4η2Qt(i))

exp(−ηtαt) +
∑

j ̸=ℓt
exp(−ηtµt(j)− 4η2Qt(j))

=
λ(i) exp(−ηt(µt(i)− αt))

1 +
∑

j ̸=ℓt
λ(j) exp(−ηt(µt(j)− αt))

,

where λ(i) = exp(−4η2Qt(i)). Note that all λ(i) ∈ (0, 1]. Define, for all i, d(i) = (µt(i)− αt). Note that for
i ∈ I, d(i) ∈ [0, 1]. Thus, we have∑

i∈I

d(i)2x(i) =
∑
i∈I

λ(i)d(i)2 exp(−ηtd(i))
1 +

∑
j ̸=ℓt

λ(j) exp(−ηtd(j))
.

To upper bound
∑

i∈I d(i)
2x(i), we can neglect the factors in the denominator which depend on i /∈ I ∪{ℓt};

this only increases the value. Let dI and λI be the vectors d and λ restricted to the index set I. Define the
function h : (0, 1]|I| × [0, 1]|I| → R as

h(λI , dI) =
∑
i∈I

λ(i)d(i)2 exp(−ηtd(i))
1 +

∑
j∈I λ(j) exp(−ηtd(j))

.

The maximum value of this function on its domain gives an upper bound on the expression above.

Lemma 17. For t > log n
η , and for any (λI , dI) ∈ (0, 1]|I| × [0, 1]|I|, we have

h(λI , dI) ≤ 2 log2 n

η2t2
.

Putting Lemmas 16 and 17 together, we have that

T∑
t=1

(µt − αt1⃗)
2 · xt ≤

∑
t≤ log n

η

2 +

T∑
t=1

[
4η

t
Qt(ℓt)

]2
+

∑
t> log n

η

2 log2 n

η2t2

≤ 32η2Q+
4 log n

η
.

20

Plugging this bound into (9), we get

Regret ≤ log n

η
+ 64η3Q+ 8 log(n) + 4η(Q+ 1).

Now, if we set η = {
√
log n/4Q, 1/10}, we get that the regret is bounded by

Regret ≤ 4
√

Q · log n+ 10 log(n).

We now give the omitted proofs of Lemmas 15, 16, and 17.

Proof. (Lemma 15)
We have:

gt(i)
2 = (ft(i)− αt + 4η(ft(i)− µt(i))

2)2

= (ft(i)− αt)
2 + 8η(ft(i)− αt)(ft(i)− µt(i))

2 + 16η2(ft(i)− µt(i))
4

≤ (ft(i)− αt)
2 + (16η + 16η2)(ft(i)− µt(i))

2 (12)

≤ 2(µt(i)− αt)
2 + (2 + 16η + 16η2)(ft(i)− µt(i))

2 (13)

≤ 2(µt(i)− αt)
2 + 4(ft(i)− µt(i))

2. (14)

Here, inequality (12) follows because |ft(i) − µt(j)| ≤ 1 for any i, j, and |ft(i) − αt| ≤ 2, inequality (13)
follows from the fact that (a + b)2 ≤ 2a2 + 2b2 for any real numbers a, b, and inequality (14) follows since
16η + 16η2 ≤ 2 if η ≤ 1/10. The lemma follows.

Proof. (Lemma 16)

Note that for t ≤ Q, Qt(ℓt) =
∑t−1

τ=1(fτ (i)− µτ (i))
2 ≤ t, and for t > Q, Qt(ℓt) ≤ Q. Thus we have

T∑
t=1

[
4η

t
Qt(ℓt)

]2
≤ 16η2 ·

∑
t≤Q

12 +
∑
t>Q

Q2

t2

 ≤ 32η2Q.

Proof. (Lemma 17)
Let S = {i : d(i) ≤ logn

ηt }, and let S′ = I \ S. We upper bound h(λI , dI) as follows:

h(λI , dI) ≤
∑
i∈S

λ(i)d(i)2 exp(−ηtd(i))∑
j∈S λ(j) exp(−ηtd(j))

+
∑
i∈S′

λ(i)d(i)2 exp(−ηtd(i))

≤ max
i∈S′

{
λ(i)d(i)2 exp(−ηtd(i))

λ(i) exp(−ηtd(i))

}
+
∑
i∈S′

log2 n

η2t2
exp (− logn) (15)

≤ 2 log2 n

η2t2
.

21

In (15) we use the inequality
∑n

i=1 ai∑n
i=1 bi

≤ maxi≤n
ai

bi
for positive reals ai and bi, for bounding the first term.

The second term is bounded using the following facts (a) λ(i) ≤ 1, and (b) the function x2 exp(−ηtx) has a
negative derivative (and is thus decreasing) when x > 2

ηt , and thus its maximum over the range [log n
ηt , 1] is

obtained at log n
ηt .

6 Conclusions and Future Work

In this paper, we investigated the possibility of bounding the regret of online learning algorithms by terms
which depend on the variation of the cost sequence, rather than the number of prediction rounds. We
analyzed two algorithms, Lazy Projection and Variation MW, and showed that these algorithms obtain
variation-bounded regret. Such bounds are significant not only because they show that it is possible to suffer
much less regret than previously believed when the cost sequence is particularly benign, but also because they
match the regret bounds of natural regret minimizing algorithms in the stochastic setting of independent
cost functions from a fixed distribution.

We believe that this work opens up many new directions for future research, all related to bounding
the regret in terms of the variation of the cost sequence in the various different scenarios in which regret
minimizing algorithms have been devised: bandit settings, strictly convex cost functions, online convex
optimization and so on. We conjecture in all such scenarios, it is possible to get variation-bounded regret.
Specifically, we conjecture that any dependence on T , the number of prediction rounds, in the regret bound
can be replaced by the same dependence on the variation of the cost sequence. Indeed, we have already
proved our conjecture true in two more online learning scenarios:

1. Exp-concave cost functions, including the Universal Portfolio Selection problem, for which we obtain
O(logQ) bounds to replace previous bounds of O(log T). [9]

2. Bandit online linear optimization, for which we obtain O(
√
Q·log T) bounds to replace previous bounds

of Õ(
√
T · log T). [10] An open problem is to replace the lower-order term of O(log T) in the regret

bound by O(logQ).

In other scenarios, the variation needs to be defined carefully in settings in which it is not natural or
obvious, such as in the case of online convex optimization.

Acknowledgements

We thank Martin Zinkevich for initial discussions on the possibility of variation bounds on the regret.

References

[1] Chamy Allenberg-Neeman and Benny Neeman. Full information game with gains and losses. In 15’th
International Conference on Algorithmic Learning Theory, 2004.

[2] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM J. Comput., 32(1):48–77, 2003.

[3] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006.

22

[4] Nicolò Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for prediction
with expert advice. Mach. Learn., 66(2-3):321–352, 2007.

[5] Thomas Cover. Universal portfolios. Math. Finance, 1:1–19, 1991.

[6] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

[7] James Hannan. Approximation to bayes risk in repeated play. In M. Dresher, A. W. Tucker, and P.
Wolfe, editors, Contributions to the Theory of Games, volume III, pages 97–139, 1957.

[8] James Hannan. Approximation to bayes risk in repeated play. In M. Dresher, A. W. Tucker, and P.
Wolfe, editors, Contributions to the Theory of Games, volume III, pages 97–139, 1957.

[9] Elad Hazan and Satyen Kale. Better investing in stochastic markets (without compromising worst-case
universality). Submitted, 2008.

[10] Elad Hazan and Satyen Kale. Better algorithms for benign bandits. In SODA, 2009.

[11] David P. Helmbold, Jyrki Kivinen, and Manfred K. Warmuth. Relative loss bounds for single neurons.
IEEE Transactions on Neural Networks, 10(6):1291–1304, November 1999.

[12] Mark Herbster and Manfred K. Warmuth. Tracking the best linear predictor. Journal of Machine
Learning Research, 1:281–309, 2001.

[13] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of Com-
puter and System Sciences, 71(3):291–307, 2005.

[14] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Inf. Comput., 132(1):1–63, 1997.

[15] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information and Com-
putation, 108(2):212–261, 1994.

[16] Vladimir Vovk. A game of prediction with expert advice. J. Comput. Syst. Sci., 56(2):153–173, 1998.

[17] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML,
pages 928–936, 2003.

23

