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Abstract

We describe novel subgradient methods for
a broad class of matrix optimization prob-
lems involving nuclear norm regularization.
Unlike existing approaches, our method ex-
ecutes very cheap iterations by combining
low-rank stochastic subgradients with effi-
cient incremental SVD updates, made pos-
sible by highly optimized and parallelizable
dense linear algebra operations on small ma-
trices. Our practical algorithms always main-
tain a low-rank factorization of iterates that
can be conveniently held in memory and ef-
ficiently multiplied to generate predictions in
matrix completion settings. Empirical com-
parisons confirm that our approach is highly
competitive with several recently proposed
state-of-the-art solvers for such problems.

1. Introduction

We consider the following convex optimization prob-
lem over matrices:

min
X∈Rm×n

f(X) + λ‖X‖∗, (1)

where f(X) is any convex function (not necessarily dif-
ferentiable), λ > 0 is a regularization parameter, and
‖X‖∗ denotes the nuclear (trace) norm of a matrix
X, which is the sum, or equivalently the l1 norm, of
the singular values of X. We assume without loss of
generality that m ≥ n. This setup generalizes, from
vectors to matrices, the widely successful idea of using
l1-regularization as a convex proxy for imposing spar-
sity constraints. Sparsity in the spectrum of a matrix

corresponds to low-rankness, a key modeling idea that
is naturally justified in a variety of application con-
texts, e.g., recommender systems, topic models, and
multi-task learning.

Two broad lines of research have emerged around the
analysis and implementation of matrix estimation al-
gorithms based on nuclear norm regularization. One
concerns the theoretical characterization of the condi-
tions under which an unknown low-rank matrix can be
exactly recovered by solving a problem of the form (1),
or variations thereof, given a set of partially observed
entries with respect to which the function f provides a
measure of prediction quality. A complementary line
of work, which this paper contributes to, concerns the
development of algorithmic frameworks to efficiently
solve (1) for large-scale problems. Given the definition
of the nuclear norm, the Singular Value Decomposition
(SVD) tends to unsurprisingly play a critical computa-
tional role in the design of nuclear norm solvers, e.g.,
the Singular Value Thresholding (SVT) (Cai et al.,
2010), Soft-Impute (Mazumder et al., 2010), acceler-
ated Proximal Gradient approach (Ji & Ye, 2009) and
related efforts, all involve applying a soft-thresholding
operator on the singular values of an iterate, which re-
quires repeated calls to an SVD solver. In particular,
if the iterates need to pass through a region where the
spectrum is dense, these techniques can potentially be-
come prohibitively expensive. An alternative approach
is proposed by Jaggi & Sulovský (2010) who map (1) to
the problem of optimizing a convex function over the
set of positive semi-definite matrices with unit trace,
for which the Sparse-SDP solver of Hazan (2008) is in-
voked. This approach is appealing since each iteration
involves the computation of only the largest singular
value, and associated left and right singular vectors, of
the gradient of f at the current iterate which involves
relatively cheap sparse-matrix operations followed by
quick rank-one updates. On the other hand, this ap-
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proach produces an ε-accurate solution with rank pos-
sibly as large as Θ( 1

ε ) making it challenging to hold the
factorization of the solution in memory and apply it
in practice for generating predictions. Another class of
methods, e.g. (Recht & Ré, 2011), works with a low-
rank parameterization directly; in general, this leads
to a non-convex formulation whose solutions may be
highly sensitive to initialization.

The contributions of this paper are as follows:

◦ A new stochastic subgradient descent approach to
solving (1). By utilizing a novel subgradient prob-
ing technique that generates low-rank steps, com-
bined with enforcing low-rankness in the iterates,
our method is able to do cheap iterates and produce
a low-rank solution. Furthermore, instead of using
sparse SVD as the main computational kernel, our
method uses highly scalable dense matrix operation
(QR factorization of a tall-and-skinny matrix) as its
basic kernel, so it is better poised to take advantage
of the computational power of modern platforms.

◦ While the theoretical worst-case running time of our
basic algorithm is O

(
mn2ε−2

)
, an efficient variant

that enforces low-rankness shows, empirically, linear
complexity in m, n and r, where the rank of the
solution is at most r.

◦ We apply our method to matrix completion and
show that it compares favorably to state-of-the-art
techniques for solving (1) (Jaggi & Sulovský, 2010;
Mazumder et al., 2010; Shalev-Shwartz et al., 2011).
In addition, our approach is more general than these
methods in that it applies, without any major mod-
ifications, to the broader class of subdifferentiable
elementwise loss functions.

1.1. Preliminaries

We use i : j to denote the set {i, . . . , j}, and [n] = 1 : n.
Vectors are always column vectors and are denoted by
boldface letters. We use 0m×n to denote an m × n
matrix of all zeros. Given R ⊆ [m] and C ⊆ [n], we
denote by XR,C the submatrix of X consisting of rows
in R and columns in C. For a matrix X ∈ Rm×n
with m ≥ n, σ(X) = (σ1(X), . . . , σn(X)) is the vector
of singular values of X, with entries in non-increasing
order. The nuclear (trace) norm ‖X‖∗ of a matrix X
is the sum of the singular values of X. For a matrix
X, let rank(X) denote its rank. When the referenced
matrix X is clear, we just use rank to denote rank(X).

Given the SVD of a matrix A ∈ Rm×n with m ≥
n, viz. A = UΣV >, the reduced SVD factorization
consists of discarding the last m−n columns of U and
bottom m−n rows of Σ. By removing singular triplets
associated with zero singular values we get the compact

SVD. Truncating a matrix to rank t (or truncated
SVD), denoted by TSVD(A, t) consists of removing
the n − t smallest singular values from the reduced
SVD. It is well known that TSVD(A, t) is the best
rank t approximation to A in both the spectral and
Frobenius norm.

A QR factorization of a matrix A ∈ Rm×n is decom-
position of A into a product A = QR of an unitary
matrix Q ∈ Rm×m and an upper triangular matrix
R ∈ Rm×n. If m ≥ n, then the reduced QR factoriza-
tion consists of discarding the last m − n columns of
Q and bottom m−n rows of R. The QR factorization
can be computed efficiently and in a stable manner
using O(mn2) operations (Trefethen & Bau, 1997).

We assume the following properties of the function f ,
which are quite basic and easily satisfied in most ap-
plications:

1. A subgradient of f at any point X, ∇f(X) ∈
∂Xf(X), is efficiently computable.

2. We know an upper bound ∆ on ‖Xopt‖F.

3. We know an upper bound G on ‖∇f(X)‖F for all
X such that ‖X‖F ≤ ∆.

2. Background

2.1. Subgradient of Nuclear Norm

The nuclear norm, as a function of the matrix, is not-
differentiable, so we cannot use gradient descent, or
stochastic gradient descent. However, the function is
convex, so we can use subgradient descent instead, and
its stochastic version, stochastic subgradient descent
(SSGD).

Definition 1 (Subgradient). The subgradient of g :
Rn → R at x is the set

∂g(x) = {y ∈ Rn : ∀z ∈ Rn 〈y, z− x〉 ≤ g(z)− g(x)}.

The following Lemma shows that we can find a matrix
in ∂‖X‖∗ using an SVD decomposition ofX. The SVD
of an m× n matrix can be done in O(mn2) time.

Lemma 2.1 (Subgradient of nuclear norm (Watson,
1992)). Let X ∈ Rm×n with m ≥ n, and let X =
UΣV > be an SVD of X. Let r = rank(X). Then

U1:m,1:rV
>
1:n,1:r ∈ ∂‖X‖∗ .

2.2. Stochastic (Sub)gradient Descent

The goal of this section is to review known results re-
garding stochastic gradient descent and stochastic sub-
gradient descent. For more information see the work
of Bottou & Bousquet (2008) and the excellent ICML
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2010 tutorial by Srebro & Tewari (2010). Subgradient
descent is a method for solving the following problem,

min
X∈K

F (X) .

It is an iterative method, where the iterates are formed
using the formula

X(t+1) = ΠK(X(t) − η(t)g(t))

where g(t) ∈ ∂F (X(t)). η(t) is referred to as the
learning rate (or step-size). The output is the iter-
ate X(`) which minimizes the objective, i.e., X(`) =
arg minX(t),0≤t≤T F (X(t)). In stochastic subgradient

descent we relax the conditions on g(t) and let it be a
unbiased estimator of a subgradient, that is E[g(t)] ∈
∂F (X(t)). The following standard theorem shows that
this process converges to the optimal solution, and an-
alyzes its convergence rate.

Theorem 2.2 (Convergence of Stochastic Subgra-
dient Descent). Apply T iterations of the update
X(t+1) = ΠK(X(t) − η(t)g(t)) where g(t) is an unbi-
ased estimator of a subgradient of F at X(t) (that is,
E[g(t)|X(t)] ∈ ∂F (X(t))) satisfying E[‖g(t)‖2F|X(t)] ≤
G2. Then

1

T

T∑
t=1

E[F (X(t))]− F (Xopt) ≤

‖Xopt −X(0)‖2F +
∑T
t=1(η(t))2G2

2
∑T
t=1 η

(t)

Proof. We use the distance from the optimum, ‖Xopt−
X(t)‖2F, as a potential function. For convenience,
define Y (t+1) = X(t) − η(t)g(t), so that X(t+1) =
ΠK(Y (t+1)). We have

‖Xopt − Y (t+1)‖2F =

‖Xopt −X(t)‖2F − 2η(t)g(t) ·X(t) + (η(t))2‖g(t)‖2.

Since projections on to convex sets always reduce dis-
tance to any given point in the convex set, we get

‖Xopt −X(t+1)‖2F ≤ ‖Xopt − Y (t+1)‖2F.

Using the above, we get that

2η(t)g(t) ·X(t) ≤
‖Xopt −X(t)‖2F − ‖Xopt −X(t+1)‖2F + (η(t))2‖g(t)‖2.

Taking expectations of the above conditioned on
X(t), and using the facts that F (X(t)) − F (Xopt) ≤
E[g(t)|X(t)] · X(t) since E[η(t)|X(t)] ∈ ∂F (X(t)), and
E[‖g(t)‖2|X(t)] ≤ G2, we get

2η(t)F (X(t))− F (Xopt) ≤
‖Xopt −X(t)‖2F − E[‖Xopt −X(t+1)‖2F|X(t)] + (η(t))2G2.

Taking expectation of the above with respect to X(t),
and summing from t = 1 to T , and using the fact that
E[‖Xopt−X(T+1)‖2F] ≥ 0, we get the stated bound.

Since F (X(`)) ≤ 1
T

∑T
t=1 F (X(t)), we get the following

corollary:

Corollary 2.3. Set η(t) = β
‖Xopt‖F
G
√
T

where β > 0, then

E[F (X(`))] ≤ 1

T

T∑
t=1

E[F (X(t))]− F (Xopt)

≤ 4
G‖Xopt‖F√

T
max

{
β,

1

β

}
.

Thus, the above corollary implies that the output iter-
ate is O( 1√

T
) close to the optimum solution in expected

F -value.

3. Stochastic Subgradient Descent
Algorithm

We now describe our stochastic subgradient descent
(SSGD) algorithm for solving nuclear norm regularized
problems of type (1). Let F (X) = f(X) + λ‖X‖∗.
Instead of solving (1), we solve

min
X∈K

f(X) + λ‖X‖∗, (2)

where K = {X ∈ Rm×n : ‖X‖F ≤ ∆}. Note that
Xopt ∈ K, so this is problem is equivalent to (1). The
reason we use this set K is to make sure our iterates
are bounded. This is ensured by projecting on K if
we ever step outside of K. The projection onto K is
defined as follows:

Definition 2 (Projection Operator for K). Define
ΠK(P ) = argminQ∈K ‖P −Q‖F = min{1, ∆

‖P‖F }P.

Let X = UΣV > be a compact SVD of X. Let
Urank, Vrank be U, V truncated to the first rank(X)
columns. Since UrankV

>
rank is a subgradient of ‖X‖∗

(Lemma 2.1), we obtain that a subgradient of F (X) =
f(X) + λ‖X‖∗ is

G(F (X))
def
= ∇f(X) + λ · UrankV

>
rank ∈ ∂XF (X) .

This gives the following upper bound on ‖G(F (X))‖F
for any X ∈ K:

‖G(F (X))‖F ≤ ‖∇f(X)‖F + λ‖UrankV
>
rank‖F

≤ G+ λ
√

rank .

The crucial ingredient for a stochastic subgradient de-
scent algorithm is an unbiased estimator for a subgra-
dient. Our technique for computing such an estimator
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is to probe G(F (X)) by multiplying it by a random
matrix.

Definition 3 (Probing Matrix). A random n×k ma-
trix Y is a probing matrix if E[Y Y >] = In×n where
In×n is the n × n identity matrix and the expectation
is over the choice of Y .

Here, k is a parameter that is adjustable in our algo-
rithm. We generally assume k � n. The following
lemma gives several families of distributions that gen-
erate probing matrices efficiently.

Lemma 3.1. Let Y = Z/
√
k where Z is a random ma-

trix drawn any one of the following distributions:

1. Independent entries taking values +1 and −1 with
equal probability 1/2.

2. Independent and identically distributed standard
normal entries.

3. Each column of Z is drawn uniformly at
random and independent of each other from
{
√
ne1, . . . ,

√
nen} (scaled identity vectors).

Then Y is a probing matrix.

Proof. Let Z = [z1, z2, . . . , zk]. Notice that, Y Y > =
ZZ>

k = 1
k

∑k
i=1 ziz

>
i . So, we only have to prove that

E[zz>] = In where z is a random vector which is dis-
tributed identically to z1, . . . , zk.

For independent ±1 entries and normal entries (cases
1 and 2 in the lemma statement) we have E[(zz>)ij ] =
E[zizj ] = 0 if i 6= j, and E[zizj ] = E[zizi] = 1 if i = j.
This immediately implies that E[zz>] = In.

As for case 3, the possible values of zz> are matrices
that are all zero except a single diagonal entry which
is equal to n (there n such matrices). Each possible
matrix occurs with equal probability (1/n). Therefore,
E[zz>] = In.

By linearity of expectation, for any matrix A we have
E[AY Y >] = AE[Y Y >] = A. Thus, in our algo-
rithms we use G(F (X))Y Y > as an unbiased estimator
of G(F (X)). Now, using an unbiased estimator instead
of an exact subgradient (that is, using SSGD instead of
subgradient descent) is beneficial only if there is some
computational advantage in doing so. Our probing
technique has two potential advantages over the use of
an exact subgradient. First, for any matrix A the ma-
trix AY Y > has rank at most k. So our estimator is,
in fact, a low-rank unbiased estimator. We will utilize
this low-rankness later on. Second, often it is more
efficient to compute the product G(F (X))Y than to
actually compute G(F (X)). For example, if Y is com-
posed of scaled identity vectors (case 3 in Lemma 3.1),

Algorithm 1 Basic-SSGD

Input: f , λ, T , step sizes η(1), . . . , η(T−1), and k

Initialize X(0) = 0m×n
for t = 0 to T − 1 do

Generate an n× k probing matrix Y
g(t) ←− G(F (X(t)))Y Y >

X(t+1) ←− ΠK(X(t) − η(t)g(t))
end for
Return X(`) = argminX(t),0≤t≤TF (X(t))

then G(F (X))Y is a matrix composed of k columns of
G(F (X)), so we need to compute only a small portion
of G(F (X)). Henceforth, we use the scaled identity
vectors as the default probing matrix.

3.1. Basic SSGD Algorithm

Using the above ingredients, we now describe a ba-
sic stochastic subgradient descent algorithm for solv-
ing (2). We use g(t) = G(F (X(t)))Y Y > as an unbiased
estimator of G(F (X(t))). Algorithm Basic-SSGD de-
scribes the complete procedure. Basic-SSGD is not
efficient in terms of running time and memory require-
ments. Subsequent subsections give more efficient vari-
ants.

We now analyze Algorithm Basic-SSGD.

Lemma 3.2. Let Y ∈ Rn×k. Then for any matrix
A ∈ Rm×n,

E[‖AY Y >‖2F] = trace(E[Y Y >Y Y >]A>A).

In particular, if Y is a probing matrix from Defini-
tion 3, then E[‖AY Y >‖2F] = n

k ‖A‖
2
F.

Proof. Consider the expected value of ‖AY Y >‖2F

E[‖AY Y >‖2F] = E[trace(AY Y >Y Y >A>)]

= E[trace(Y Y >Y Y >A>A)]

= trace(E[Y Y >Y Y >]A>A),

where the last step follows from the fact that expecta-
tion distributes over trace sum.

Now set Y = Z/
√
k. We now show that

E[Y Y >Y Y >] = n
k I. Firstly, note that

E[Y Y >Y Y >] = E[ZZ>ZZ>]/k2.
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Lets look at E[ZZ>ZZ>].

E[ZZ>ZZ>] = E

 k∑
i=1

 k∑
j=1

zjz
>
j

 ziz
>
i


=

k∑
i=1

k∑
j=1

E[zjz
>
j ziz

>
i ]

Now, since Y is a probing matrix

E[zjz
>
j ziz

>
i ] =

{
0n×n if i 6= j,
nIn if i = j

Therefore,

k∑
i=1

k∑
j=1

E[zjz
>
j ziz

>
i ] =

k∑
i=1

E[ziz
>
i ziz

>
i ] = (nk)In

Hence, E[ZZ>ZZ>] = (nk)I which implies that
E[Y Y >Y Y >] = (n/k)I.

E[‖AY Y >‖2F] = trace(E[Y Y >Y Y >]A>A)

=
n

k
trace(A>A) =

n

k
‖A‖2F.

Substituting A = G(F (X(t))) in Lemma 3.2 gives

E[‖g(t)‖2F] ≤ n

k
‖G(F (X(t)))‖2F

≤ n

k

(
G+ λ

√
rank(X(t)))

)2

.

Finally, using this in a standard bound on the conver-
gence rate of the SSGD algorithm (Corollary 2.3), we
get the following theorem about the convergence rate
of the Basic-SSGD algorithm.

Theorem 3.3. Suppose r is an upper bound on
rank(X(t)) for all t. Then if we set η(t) =

β
√
k∆√

n(G+λ
√
r)
√
T

, the solution X(l) of Algorithm Basic-

SSGD satisfies

E[X(l)]− F (Xopt) ≤ 4
√
n

(G+ λ
√
r)∆√

kT
max

{
β,

1

β

}
.

Thus Basic-SSGD converges to within ε · ‖Xopt‖F of
the optimal goal in O(n/kε2) iterations. If we fix ε
then convergence is in O(n/k) iterations.

3.2. Decreasing the Iteration Cost of
Basic-SSGD for Low Rank Iterates

In each iteration of Basic-SSGD, we have to compute
g(t). The straightforward way of computing g(t) re-
quires computing the SVD of X(t), which has O(mn2)

time complexity and is computationally prohibitive for
large matrices. Fortunately, when the rank of X(t) is
small we can do much better. Let r(t) denote the rank
of X(t). Assume that we have a compact SVD de-
composition of X(t): X(t) = U (t)Σ(t)(V (t))>. Since
X(0) = 0m×n, we certainly have such a decomposition
for X(0). We now show how to generate the SVD of
X(t+1), without explicitly forming X(t+1). To do so,
we first define a class of loss functions.

Definition 4 (Sum Loss Function). A function f :
Rm×n → R is a sum loss function if for X ∈ Rm×n,
f(X) =

∑
ij fij(Xij) where the fijs are convex func-

tions. We say that f is efficiently computable if fij(x)
and a subgradient f ′ij(x) of fij at x can be computed
in O(1) time for every i, j, and x.

Note that the above definition captures many com-
monly used functions, including squared error, ab-
solute error, hinge loss function (with or without
smoothing), and can also apply to arbitrary domain-
specific subdifferentiable elementwise loss functions.

Lemma 3.4. Suppose that f is an efficiently com-
putable sum loss function. Suppose that the probing
matrix Y is composed of scaled identity vectors. Given
the SVD of X(t), there is an algorithm to compute the
SVD of X(t+1) = ΠK(X(t) − η(t)g(t)) (without explic-
itly computing X(t+1) itself) in O(m(r(t) + k)2) time,
where r(t) is the rank of X(t).

Proof. We first write a formula for g(t):

g(t) = G(X(t))Y Y >

= [∇f(U (t)Σ(t)(V (t))>)Y + U (t)(V (t))>Y ]︸ ︷︷ ︸
S(t)

Y >.

By first computing (V (t))>Y and then multiplying by
U (t) we can compute U (t)(V (t))>Y in O(mkr(t)) time.

Since Y is composed of scaled identity vectors,
∇f(X(t))Y is composed of scaled columns of
∇f(X(t)). The expansion f(X) =

∑
ij fij(Xij) im-

plies that (∇f(X))ij = f ′ij(Xij), so to find ∇f(X(t))Y

we simply have to compute the values ∇f(X(t)) at
the corresponding columns. The entries of a single
column of X(t) can be computed from the decompo-
sition X(t) = U (t)Σ(t)(V (t)))> in O(mr(t)) time, so k
columns can be computed in O(mkr(t)). Therefore,
S(t) can be computed in O(mkr(t)) time.

Since g(t) = S(t)Y > we have X(t+1) = ΠK(X(t) −
η(t)S(t)Y >). Let us now define

Û (t+1) def
= [U (t)Σ(t) S(t)] and V̂ (t+1) def

= [V (t) − η(t)Y ]
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Algorithm 2 Fast-SSGD-Update

Input: U ∈ Rm×r(t) , Σ ∈ Rr(t)×r(t) , V ∈ Rn×r(t) ,
Y ∈ Rn×k, and η(t) > 0

1. S(t) ←− G(F (X))Y {without forming G(F (X))}
2. Û (t+1) ←− [U (t)Σ(t) S(t)]

3. V̂ (t+1) ←− [V (t) − η(t)Y ]

4. Factorize: Û (t+1) = QURU
5. Factorize: V̂ (t+1) = QVRV
6. T ←− RUR>V
7. SVD computation: T = M Σ̄(t+1)N>

8. Ū (t+1) ←− QUM
9. V̄ (t+1) ←− QVN
10. Return Ū (t+1), Σ̄(t+1), and V̄ (t+1)

and we get that X(t+1) = ΠK(Û (t+1)(V̂ (t+1))>). This
is already a low-rank representation of the matrix. We
now show how to turn the low-rank representation
Û (t+1)(V̂ (t+1))> to a compact SVD. First, we compute

a reduced QR decomposition of Û (t+1) = QURU and
V̂ (t+1) = QVRV . We then compute RUR

>
V and find

an SVD decomposition RUR
>
V = M Σ̄(t+1)N>. Then

we compute Ū (t+1) = QUM and V̄ (t+1) = QVN and
we have

X(t+1) = ΠK(Ū (t+1)Σ̄(t+1)(V̄ (t+1))>) .

The decomposition of the inner matrix is, in fact, a
reduced SVD decomposition since QU , M , QV and N
are orthonormal, and Σ̄(t+1) is diagonal with positive
values. Since it is a SVD we can efficiently do the K
projection and remove zero (or numerically zero) sin-
gular values to obtain the compact SVD decomposition
X(t+1) = U (t+1)Σ(t+1)(V (t+1)) of the next iterate.

It is easy to verify that the dominant operation, in
terms of running time, is the computation of the
QR factorization of Û (t+1). Since this is a factoriza-
tion of an m × (r(t) + k) matrix, the overall cost is
O(m(r(t) + k)2), which is much better than O(mn2)
if r(t) + k � n. For a pseudo-code description, see
Algorithm 2.

Unfortunately, in Basic-SSGD it is quite probable
that rank of X(t+1) is r(t) +k, and therefore, after n/k
iterations the iterates could become full rank, and from
there on updates will take O(mn2) time per iteration
(same iteration cost as the trivial implementation of
Basic-SSGD). We will see how to avoid this situation
in the next subsection.

Scalability. The running time of each iteration is
dominated by computing QR factorizations of tall-
and-skinny dense matrices. We could have used SVD

computations instead of QR computations. Since QR
and SVD have equivalent asymptotic running this
would not have changed the time complexity of the
algorithm. However, we chose to use QR factoriza-
tions instead since it is a simpler operation that ex-
hibits better running time in practice. The use of QR
factorization also makes the update operation highly
scalable on modern parallel architectures. By using a
highly tuned package like ScaLAPACK (Choi et al.,
1992) good speedups should be attainable with little
effort. Recent research on QR factorization, which is
a very important linear algebra kernel, has shown how
to implement it efficiently on communication-bound
massive parallel machines (Demmel et al., 2008),
MapReduce clusters (Constantine & Gleich, 2011),
and GPUs (Anderson et al., 2011). It is worth noting
that our algorithm avoids the computation of singular
values on large sparse matrices, which require more so-
phisticated communication-avoiding methods (Hoem-
men, 2010), which do not scale as well as dense linear
algebra operations.

3.3. Enforcing Low-Rank Iterates

The update algorithm of Lemma 3.4 could be used in
Algorithm Basic-SSGD to go from the SVD of X(t)

to SVD of X(t+1) = ΠK(X(t) − η(t)g(t)). The discus-
sion in the previous section shows that if the iterates
(X(t)s) in Algorithm Basic-SSGD are low rank then
the iterations are fast. This suggests the idea of explic-
itly truncating the least singular values of the iterates
to ensure that the iterates always remain low rank. In
this section, we formalize this idea.

Let Mr = Mm×n
r denote the set of m-by-n ma-

trices of rank at most r. Suppose we assume that
rank(Xopt) ≤ r, i.e., Xopt ∈ Mr, for some param-
eter r. Then minimizing F (X) over K ∩ Mr yields
the same optimum solution. We look at the prob-
lem of solving (2) with the additional constraint that
X ∈ Mr. However, the set Mr is non-convex. Fur-
thermore, rank constraints, like X ∈ Mr, typically
result in NP-hard problems (see (Natarajan, 1995)).

Our strategy is to again use a projected subgradient
method. That is, in each iteration we start with a
regular stochastic subgradient step. This step takes
us out of Mr. The following step is to project back
to Mr. It is well known that for any matrix X the
best rank r approximation to X (measured in terms
of Frobenius norm) can be computed by truncating the
SVD to the top r singular values. Since our algorithm
keeps a SVD representation of the iterates X(t), we
can compute the projection onMr efficiently. Despite
not having a theoretical guarantee because of the non
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Algorithm 3 Efficient-SSGD

Input: f , λ, T , η, r, and k

Initialize U (0) = 0m×r, Σ(0) = 0r×r, and V (0) = 0n×r
for t = 0 to T − 1 do

Generate an n× k probing matrix Y
[Ū (t+1), Σ̄(t+1), V̄ (t+1)]← Fast-SSGD-Update (U (t),Σ(t), V (t), Y, η(t))

Enforce rank constraint: U (t+1) ← Ū
(t+1)
1:m,1:r, Σ(t+1) ← Σ̄

(t+1)
1:r,1:r, and V (t+1) ← V̄

(t+1)
1:n,1:r

Σ(t+1) ← ΠK(Σ(t+1)) {Rescaling of diagonal (if necessary).}
Remove zero singular values (in practice a small threshold like 10−8 should be used)

end for
Return X(`) = argminX(t),0≤t≤TF (X(t))

convexity ofMr, our experiments, which we report in
Section 5, suggest that O(n/k) iterations are still suf-
ficient for this explicit rank-constrained nuclear norm
regularized problem. Note that the projection opera-
tor on K does not change the rank of the matrix since
it is a simple scaling. For a pseudo-code description,
see Algorithm 3.

Role of r. Since nuclear norm regularization is typi-
cally used as a proxy for rank constraints, one might
wonder why we impose an explicit rank constraint.
Primarily, we use the rank constraint only for com-
putational efficiency reasons though we consistently
observed statistical benefits from additionally keeping
the nuclear norm regularizer (i.e., λ > 0). As long
as r ≥ rank(Xopt) the solution to the problem does
not change, and the rank constraint is passive. So we
need only an upper bound on the rank of the opti-
mal solution. We can even select r = n, which will
remove the rank constraint completely. However, the
running time of the algorithm does depend on r, so
it is best to set r as close as possible to rank(Xopt).
Since we use nuclear norm regularization we expect the
rank of Xopt to be small. We note that even when the
rank constraint is passive, it is passive only in terms
of the optimization problem. However, while the opti-
mum indeed does not change, subgradient descent on
the new non-convex problem might (theoretically) get
stuck at local minima even for large r.

Output. The output of our algorithm matrix in com-
pact SVD form. This is a much more succinct rep-
resentation that requires only O(mr) memory words,
instead of O(mn). A specific entry in the matrix can
be computed in O(r) time, and the entire matrix can
be computed in O(mnr) time.

Choice of k. Since we are explicitly enforcing the
rank of the iterates to be smaller than r we have
r(t) ≤ r. This implies that each iteration is computed
in O(m(r + k)2) time. There is a relation between k

Algorithm 4 SSGD-Matrix-Completion

Input: Z ∈ Rm×n and parameters r, s, δ, and ν

[U (0),Σ(0), V (0)] = TSVD(Z, r)

α← 1
‖Z‖2F

, β ← δ·f(X(0))
(‖Z|2F·‖X(0)‖∗)

∆← αβ−1‖Z‖F, η ← ν‖Z‖2F
for t = 0 to s

⌈
n
r

⌉
do

Create C = c1, . . . , cr, ∀i ci drawn i.i.d. from [n]
Y ← [ec1 , . . . , ecr ]

P (t) ← βU (t)(V
(t)
C,1:r)

>

S(t) ←
√

n
k (2α(U (t)Σ(t)(V

(t)
C,1:r)

>−Z1:m,C)+P (t))

Û (t+1) ← [U (t)Σ(t) S(t)]

V̂ (t+1) ← [V (t) − η(t)Y ]

Factorize: Û (t+1) = QURU , V̂ (t+1) = QVRV
T ← RUR

>
V

SVD computation: T = M Σ̄(t+1)N>

Ū (t+1) ← QUM , V̄ (t+1) ← QVN
U (t+1) ← Ū

(t+1)
1:m,1:r,Σ

(t+1) ← Σ̄
(t+1)
1:r,1:r, V

(t+1) ← V̄
(t+1)
1:n,1:r

if ‖Σ(t+1)‖F > ∆ then
Σ(t+1) ← Σ(t+1)∆/‖Σ(t+1)‖F

end if
end for

and the number of iterations: as k grows our gradients
improve so we expect to converge in less iterations. In
all our experiments we set k = r to avoid an additional
tunable parameter

4. Application: Matrix Completion

In the low rank matrix completion problem, we are
given a set of indices Ω ∈ [m]× [n] and associated val-
ues (Zij)(i,j)∈Ω and we are required to complete the
matrix with the lowest possible rank. Minimizing the
rank is hard, so a popular approach for solving the
matrix completion is as follows. Let PΩ be the projec-
tion onto the index set Ω. That is, (PΩ(X))ij = Xij

if (i, j) ∈ Ω and 0 otherwise. Let Z be the matrix
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containing the known values at their correct position
and 0 in all other positions. The problem to be solved
is then

min
X∈Rm×n

α‖PΩ(X)− Z‖2F + β‖X‖∗ . (3)

For reasons that will be apparent later we chose to
write the problem with two parameters (α and β) in-
stead of a single parameter λ. Other variants are pos-
sible, like using `1-loss instead of `2-loss, or any subd-
ifferentiable loss function for that matter, but we will
focus on (3).

We now show how are approach can be used to
solve (3). Set f(X) = α‖PΩ(X) − Z‖2F. We have
∇f(X) = 2α(PΩ(X) − Z). Note that f(X) is an effi-
ciently computable sum loss function.

We also need to bound the Frobenius norm of Xopt in
order to define the convex set KF. We observe that

‖Xopt‖F ≤ ‖Xopt‖∗ ≤ β−1F (Xopt)

≤ β−1F (0m×n) = αβ−1‖Z‖2F.

Finally, we need to set the step sizes η(t). In our ex-
periments, we found that using a fixed step size η gave
the best results. To make the step size scale free we
set η = ν‖Z‖2F where ν is a parameter.

Heuristics for warm-starting the algorithm and
setting the parameters. Our algorithm can start
from any matrix with rank up to r as long as we have
a compact SVD of that matrix. We warm-start our
algorithm by a rank r truncated SVD of Z (i.e., X(0) =
TSVD(Z, r)). The initial SVD is also useful for setting
α and β in a scale free manner. The nuclear norm
serves as a regularizer, so we expect β‖Xopt‖∗ to be
some magnitude smaller than αf(Xopt). We do not
know the values of ‖Xopt‖∗ and f(Xopt), so instead
we use the values of ‖X(0)‖∗ and f(X(0)). First, we
set α = 1/‖Z‖2F, which will make the value of αf(X)
range between 0 and 1. We then find β such that
β‖X(0)‖∗ = δ · αf(X(0)), where δ is a new parameter.
That is we set β = δ · f(X(0))/(‖Z‖2F · ‖X(0)‖∗).

The complete pseudo-code listed in Algorithm SSGD-
Matrix-Completion. Overall, Algorithm SSGD-
Matrix-Completion has four parameters: (i) bound
on the rank of the solution (r), (ii) number of super-
iterations (s; we call every

⌈
n
r

⌉
iterations a super-

iteration), (iii) normalized regularization parameter
(δ), and (iv) normalized step size (ν).

5. Experimental Results

We ran our matrix completion algorithm (Algo-
rithm SSGD-Matrix-Completion) on two stan-

dard collaborative filtering datasets. The first dataset
(MovieLens 10M, partition-rb) has about 107 ratings
of 69878 users on 10677 movies. The second dataset
(Netflix) has about 108 ratings of 480189 users on
17770 movies. The ratings are on an integer scale from
1 to 5. We partitioned each dataset into training and
test sets as done by Jaggi & Sulovský (2010). We pre-
processed the datasets as follows. For every row and
column of training matrix Z we computed the mean.
Let µi denote the mean rating of row (user) i, and µ̂j
denote the mean rating of column (movie) j. We sub-
tract from each training and test rating, Xij , the value
(µi + µ̂j)/2. In the graphs we refer to our algorithm
as “SSGD”.

JSH and Soft-Impute We compared our results to
two other matrix completion algorithms which are also
based on solving nuclear norm regularized problems.
The first algorithm (which we refer to as “JSH”), sug-
gested by the works of Hazan (2008) and Jaggi &
Sulovský (2010), is based on an extension of the Frank-
Wolfe (Frank & Wolfe, 1956) algorithm for optimizing
a function over the bounded positive semidefinite cone
(see also (Clarkson, 2008)). We used a simple MAT-
LAB implementation of the Algorithm 2 from (Jaggi
& Sulovský, 2010). The function ApproxEV was im-
plemented by calling MATLAB’s svds function with
default parameters (fixed tolerance). The regulariza-
tion parameter (t) was set according to the best val-
ues reported (Jaggi & Sulovský, 2010), i.e., t = 48333
for MovieLens and t = 99592 for Netflix. The sec-
ond algorithm that we compared to is the soft singu-
lar value thresholding algorithm of Mazumder et al.
(2010). We refer to this algorithm as “Soft-Impute”.
Here, we used the MATLAB code provided by the
authors (see (Mazumder et al., 2010)). We used the
path-following strategy suggested by the code, i.e., we
set a path of values for the regularization parameter
(λ) where the results on a value are used as a warm-
start for the next value. The results where exam-
ined (RMSE measured) at the different points along
the regularization path, and the running time at any
point λi is the sum of time needed to run the algo-
rithm at λi and the running time of λi−1 (because
of the warm start). The path used for MovieLens was
(λ0/2, λ0/4, λ0/8, λ0/10), and the path used for Netflix
was (λ0/250, λ0/300), where λ0 is the spectral norm of
the input matrix Z. Note that both Jaggi & Sulovský
(2010) and Mazumder et al. (2010) apply additional
heuristics and/or post-processing to their basic algo-
rithm. Additionally, Mazumder et al. (2010) measure
only time spent on SVD computations.

These differences in the experimental setup, together
with our effort to bring all algorithms under ex-
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actly the same experimental protocol, might explain
the discrepancy between the results we show here
and the results reported in (Jaggi & Sulovský, 2010)
and (Mazumder et al., 2010). Nonetheless, for com-
pleteness, we also report their published RMSEs.
When all algorithms are compared in the same set-
ting, and even relative to best reported RMSEs, we
find that our stochastic subgradient descent approach
compares favorably to the Frank-Wolfe and singular
value thresholding based approaches for solving ma-
trix completion problems.

Experimental Setup. We used a 64-bit version of
MATLAB 7.8. The experiments were done on a two
quad-core Intel E5410 computer running at 2.33 GHz,
with 32GB DDR2 800 MHz RAM, running Linux 2.6.
None of the codes explicitly uses the eight cores, al-
though some operations (like dense QR factorization)
are automatically parallelized by MATLAB. The mea-
sured running times are wall-clock times and were
measured using the ftime Linux system call.

Setting the parameters and sensitivity to
them. In Figure 1, we examine SSGD-Matrix-
Completion’s sensitivity to the value of the param-
eters r, δ, and ν. The best choice of rank (r) is 11.
However, increasing the rank from 11 to 15 only re-
sults in a 0.75% increase in RMSE, and decreasing the
rank to 7 only causes a 0.38% increase in RMSE. The
best choice of δ is around 0.01. Overestimating δ af-
fects the RMSE more adversely than underestimating.
For example, setting δ to 0.1 results in a 5% increase
in the RMSE, whereas setting δ to 0.001 only leads to
a 0.48% increase. The best choice of step size (ν) is
around 0.009, and the RMSE increases quite smoothly
as we go away from this value. We set δ = 0.015, and
ν = 0.005 based on preliminary observations on Movie-
Lens 10M without attempting any exhaustive tuning.
For Netflix, we simply used the same parameters with-
out any additional experimentation.

Results on the MovieLens 10M Dataset. In Fig-
ure 2(a), we plot the RMSE on the test set as a func-
tion of time. SSGD-Matrix-Completion decreases
the error much faster than the other two algorithms,
and maintains a better error throughout. SSGD-
Matrix-Completion achieved a RMSE of 0.8721 af-
ter 1 hour. After running for 180 super-iterations,
which took 11.47 hours, the RMSE of SSGD-Matrix-
Completion was 0.8555. Compared to this, the JSH
obtained a RMSE 0.8640 after 11.66 hours and Soft-
Impute obtained a RMSE of 0.8605 after 12.19 hours.
Jaggi & Sulovský (2010) report 0.8573 as the best
RMSE obtained using their implementation.

In Figure 2(b), we plot the RMSE as a function of

rank of the iterates. Every iteration of JSH involves
addition of a rank-one matrix, so the rank of iterates
soon becomes large. For both JSH and Soft-Impute,
we needed to go to a much larger rank to obtain a
RMSE comparable to that of a rank-11 solution ob-
tained by SSGD-Matrix-Completion. We stress
that at a comparable RMSE a low rank solution is
more useful than an high rank solution since it can
be held in memory and can be queried much faster to
produce a prediction.

Results on the Netflix Dataset. Here too, SSGD-
Matrix-Completion outperforms JSH and Soft-
Impute. After running for 25 super-iterations, which
took 23.97 hours, SSGD-Matrix-Completion ob-
tained a RMSE of 0.9516. After 24.08 hours,
JSH obtained a RMSE of 0.9583 while Soft-Impute
achieved its best RMSE of 0.9603 after 8.55 hours
(after 24 hours Soft-Impute’s RMSE was worse than
this number). After 180 super-iterations, SSGD-
Matrix-Completion obtained a RMSE of 0.9411.
Jaggi & Sulovský (2010) report 0.9478 as the best
RMSE obtained using their optimized implementa-
tion. Mazumder et al. (2010) report 0.9497 as the best
RMSE obtained in their experiments.

Comparison with GECO. The GECO algorithm
proposed in Shalev-Shwartz et al. (2011) is not a solver
for nuclear norm regularized problems, but uses a
greedy method, with optimality guarantees, to opti-
mize f under explicit low-rank constraints. We used
the implementation provided to us by the authors
with recommended parameters. On MovieLens 10M,
GECO returned the best RMSE of 0.8771 at a rank
of 17. Our approach yields a better RMSE at a lower
rank though GECO’s results reaffirm the effectiveness
of maintaining explicit low-rank constraints. On the
other hand, the running time of the GECO implemen-
tation was found to be significantly worse than other
methods and we considered it impractical to run it on
the Netflix dataset.

Comparison to Non-Convex Methods. Methods
that work directly with a low-rank parameterization
are significantly different in flavor from convex meth-
ods since the local minima they find may or may not be
optimal for a given choice of rank parameter. In the-
ory, they may be sensitive to initialization and require
restarts as reported by Recht & Ré (2011). In prac-
tice, on the two datasets that we tested after our draft
was written, we found them to be quite robust and ef-
ficient, e.g., on MovieLens 10M they get to an RMSE
of 0.857 in 45 mins and on Netflix they attain RMSE
of 0.9399 in a couple of hours. This is not surprising
since these methods, and their variations, dominated
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Figure 1. Sensitivity of SSGD to parameters on the MovieLens 10M dataset. We run SSGD for 45 super-iterations. In
each of the three graphs, we fix two parameters and vary the third.
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Figure 2. Figure (a): test RMSE vs time on MovieLens 10M. Figure (b): test RMSE vs rank MovieLens 10M (for SSGD-
Matrix-Completion, rank r = 11; figure 1 shows its RMSE vs rank). Figure (c): shows test RMSE vs time on the
Netflix dataset.

the Netflix contest. We advocate that efforts to im-
prove the performance of convex nuclear norm meth-
ods, with an eye towards making them efficient and
practical, should include such comparisons.

References

Anderson, Michael, Ballard, Grey, Demmel, James, and
Keutzer, Kurt. Communication-Avoiding QR Decom-
position for GPUs. In IPDPS, 2011.
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