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Abstract

We give a simple, more efficient and uniform proof of the
hard-core lemma, a fundamental result in complexity
theory with applications in machine learning and cryp-
tography. Our result follows from the connection be-
tween boosting algorithms and hard-core set construc-
tions discovered by Klivans and Servedio [11]. Infor-
mally stated, our result is the following: suppose we
fix a family of boolean functions. Assume there is an
efficient algorithm which for every input length and ev-
ery smooth distribution (i.e. one that doesn’t assign
too much weight to any single input) over the inputs
produces a circuit such that the circuit computes the
boolean function noticeably better than random. Then,
there is an efficient algorithm which for every input
length produces a circuit that computes the function
correctly on almost all inputs.

Our algorithm significantly simplifies previous
proofs of the uniform and the non-uniform hard-core
lemma, while matching or improving the previously best
known parameters. The algorithm uses a generalized
multiplicative update rule combined with a natural no-
tion of approximate Bregman projection. Bregman pro-
jections are widely used in convex optimization and
machine learning. We present an algorithm which ef-
ficiently approximates the Bregman projection onto the
set of high density measures when the Kullback-Leibler
divergence is used as a distance function. Our algo-
rithm has a logarithmic runtime over any domain pro-
vided that we can efficiently sample from this domain.
High density measures correspond to smooth distribu-
tions which arise naturally, for instance, in the context
of online learning. Hence, our technique may be of in-
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dependent interest.

1 Introduction

Informally, a hard-core lemma states that if a boolean
function f : {0, 1}n → {0, 1} is somewhat hard to
compute for a class of boolean circuits, then there is
a large subset of inputs on which the function is very
hard to compute for a slightly smaller class of circuits.
Impagliazzo [7] gave the first proof of such a theorem
and used it to derive an alternative proof of Yao’s XOR
lemma [17]. In this context, the hard-core lemma is used
to transform a somewhat hard problem into a very hard
problem. This method called hardness amplification is
routinely used in complexity theory and cryptography.

The hard-core lemma itself is actually proven via
the contrapositive as follows. We assume that for ev-
ery large enough set of inputs, there is a small circuit
that can match the function with a noticeable advan-
tage over random guessing. From large sets, we move to
high density measures. These are mappings from {0, 1}n

to a weight in [0, 1] such that the total weight is large.
Thus, high density measures are relaxations of indicator
functions on large sets. Consequently, we work with the
assumption that for every high density measure, there is
a small circuit that matches the function with an advan-
tage noticeably better than random guessing when in-
puts are sampled with probability proportional to their
weight in the measure. Note that high density measures
correspond to smooth probability distributions that do
not place too much weight on any single point.

Starting from this assumption, we develop a certain
kind of boosting algorithm. Boosting is an essential al-
gorithmic technique due to Freund and Schapire [2, 12]
widely used in machine learning in order to learn con-
cept classes with high accuracy starting from inaccurate
hypotheses. In our context, the boosting algorithm gen-
erates a sequence of carefully constructed measures and
for each such measure it obtains a small circuit that
computes the function noticeably better than random
guessing. Finally, it combines these circuits in some
manner (typically, by taking a majority vote) to produce
a larger circuit that correctly computes the function on
almost all inputs.



The connection between boosting algorithms in
machine learning and hard-core set constructions was
first observed by Klivans and Servedio [11]. For a
boosting algorithm to imply the existence of large hard-
core sets, it must satisfy two properties: first, the
measures it generates must have high density (we refer
to this as the smoothness property). Second, the
number of rounds in the boosting algorithm should be
small, so that the final circuit size is not too much larger
than the circuits obtained in the process.

The hard-core lemmas obtained from such boost-
ing algorithms are typically non-uniform: the output
circuit is not created by a single efficient algorithm for
varying input sizes. It may, in fact, depend on informa-
tion that is hard to compute. Establishing a uniform
hard-core lemma turned out to be more difficult with a
first proof due to Holenstein [5] and an earlier weaker
variant by Trevisan [14]. There are at least two main
reasons for our interest in uniform techniques:

1. Strong methods of hardness amplification are
known for non-uniform models of computation,
e.g., [17]. Many of these fail in the uniform set-
ting. Developing techniques for uniform hardness
amplification has been an active research topic in
recent years [14, 15, 8, 9].

2. Uniform techniques are more natural from an algo-
rithmic point of view in areas such as online deci-
sion making and expert learning and hence could
have potential applications in these areas.

In this paper, we give a new (uniform) algorithm for
boosting that enjoys the additional smoothness prop-
erty necessary to prove the hard-core lemma. This al-
gorithm has the additional desirable property that it
has the same number of iterations as the AdaBoost al-
gorithm of Freund and Schapire and hence it is more ef-
ficient than previous methods. Our algorithm is also in-
spired by Warmuth and Kuzmin’s [16] technique (which,
in turn, uses ideas that originated in the work Herb-
ster and Warmuth [4]) of obtaining smooth distributions
from any other distribution by projecting it into the set
of smooth distributions using the Kullback-Leibler di-
vergence as a distance function. We transfer this tech-
nique to the context of high density measures over the
boolean hypercube. The key difference is that the hy-
percube is a domain of exponential dimension and suit-
able projections might be difficult to compute efficiently.
This problem can be overcome by allowing the hard-core
lemma to be non-uniform. In the uniform case, however,
we need to develop an efficient approximation algorithm
instead.

1.1 Our Result. As mentioned earlier, a measure is
a function M : {0, 1}n → [0, 1]. Define the density of
the measure to be 2−n

∑
x∈{0,1}n M(x).

We will prove the following uniform hardcore
lemma:

Theorem 1.1. Let {fn}n∈N denote a family of boolean
function and let δ, γ : N → (0, 1). Suppose, there
exists an algorithm A which given oracle access to any
measure M over {0, 1}n of density δ(n), returns a
circuit C of size at most s(n) such that Prx∼M [C(x) =
fn(x)] ≥ 1

2 + γ(n).
Then there is an algorithm B which for every n

and oracle access to fn with probability 1− η (over the
internal randomness of B) returns a circuit C ′ such that
C ′ computes fn correctly on at least a 1− δ(n) fraction
of all inputs. Furthermore,

1. the algorithm B works in O( 1
γ2 log 1

δ ) rounds with
one call to A in each round and the runtime of B
in every round is linear in n, log 1

η , 1
δ , 1

γ4 and the
cost of simulating A,

2. the circuit C ′ is the majority of O( 1
γ2 log 1

δ ) circuits
of size s(n).

Note that the algorithm assumes the existence of
an algorithm which returns small circuits that perform
noticeably better than random guessing when supplied
with an oracle for any high density measures rather than
an oracle for any large subset of inputs. However, an
easy application of Chernoff bounds shows that if a set
is chosen from a high density measure by choosing each
input independently with probability equal to its weight
in the measure, then such a set has large size and any
small circuit has very similar performance when inputs
are chosen uniformly from such a set and when they are
chosen according to the measure (see [5] for details).
Thus, Theorem 1.1 implies an identical theorem where
the assumption on oracle access to a measure of density
at least δ(n) is replaced by a similar assumption on
oracle access to a subset of inputs of size at least δ(n)2n.

The main virtue of our result is efficiency and
simplicity. We significantly simplify both the best
known non-uniform construction due to Klivans and
Servedio [11], as well as the uniform lemma due to
Holenstein [5]. At the same time we match the best
known parameters in terms of circuit size and obtain
additional improvements in runtime.

Compared to the work of Klivans and Servedio [11],
our algorithm is simpler for three reasons: (a) It ob-
tains the best known parameters for hard-core set con-
structions directly by applying the boosting algorithm,
rather than building it up incrementally by accumu-



lating small hard-core sets, and (b) it obviates the ne-
cessity of composing two different boosting algorithms,
with separate analyses of the distributions they produce,
and, consequently, (c) the final circuit found in our con-
struction is a simple majority over circuits found by the
boosting algorithm, rather than a majority of majorities
over circuits.

Finally, the improved efficiency of our boosting
algorithm has ramifications for an application in Klivans
and Servedio’s paper: it enables us to shave off a factor
of O(log6 1

δ ) from the running time of the fastest known
algorithm to learn DNF formulas with membership
queries under the uniform distribution, where δ is the
error parameter (i.e. to output a hypothesis that
matches the unknown DNF formula on a 1−δ fraction of
inputs). Also, the final hypothesis is a simple majority-
of-parities circuit, instead of a majority-of-majorities-
of-parities circuit. Our boosting algorithm should be
of independent interest also for the applications in
Serverdio’s paper [13] on learning in the presence of
malicious noise.

Compared to Holenstein’s construction we reduce
the dependence in the circuit size from 1/δO(1) to
O(log 1

δ ). The runtime of the algorithm B is better
by polynomial factors. In the context of Holenstein’s
applications in cryptography [5, 6], these quantitative
improvements result in more efficient proofs of security.
The main technical difficulty in Holenstein’s construc-
tion is a procedure to ensure that any distribution pro-
duced at intermediate steps has high enough density.
This step is necessary in order to meet the assumption
of the lemma. The proof of termination for this pro-
cedure is rather complicated. In contrast, in our proof
this step is replaced by a natural notion of approximate
Bregman projection. Bregman projections are widely
used in convex optimization and machine learning to
make solutions more well-behaved. Hence, our tech-
nique of computing approximate Bregman projections
may be of independent interest. For this reason, we will
give an informal overview of our techniques in the next
section.

2 Overview of the proof

The structure of our boosting algorithm is based on the
same technology as Freund and Schapire’s well known
AdaBoost algorithm [3] and that is the Multiplicative
Weights Update method. Specifically, our algorithm
creates throughout several round a sequence of (implic-
itly represented) probability measures M (1), . . . , M (T )

over the boolean hypercube. Every measure is obtained
from the previous one by applying a multiplicative up-
date rule based on a certain penalty function. In the
t-th round of our algorithm, we pass the measure M (t)

to the weak learning algorithm given in the assumption
of our theorem. This algorithm produces a circuit C(t).
The penalty function used at the end of the t-th round
is based on the performance of this circuit when inputs
are drawn from the measure M (t). In this fashion, we
create a family of circuits C(1), . . . , C(T ). These circuits
we finally combine into a single majority circuit.

The difficulty with this approach is to make sure
efficiently that every measure M (t) is of high enough
density. This requirement is a priori violated by the
Multiplicative Weights Update. To achieve this prop-
erty we need to augment our algorithm with the tech-
nique of Bregman projections (as used in [4, 16] for a
similar purpose).

2.1 Efficient Bregman projections. The advan-
tage and the size of the circuit we output all depend
on the performance of the multiplicative weights algo-
rithm which is analyzed using a potential argument.
Abstractly, in this potential argument we fix a measure
M and track the distance from M to each point M (t).
Our notion of distance is the Kullback-Leibler diver-
gence D(M ||M (t)). The Kullback-Leibler divergence is
an example of a Bregman divergence. Therefore, Breg-
man’s Theorem implies that the distance D(M ||M (t))
does not increase even when we project M (t) to some
convex set Γ that contains M . Here, the projection of
M (t) onto Γ is defined as the measure M ′ that mini-
mizes the distance D(M ′ ||M (t)). Naturally, in our case
the convex set Γ is polytope of high density measures
over the boolean hypercube. Notice, the Bregman pro-
jection is defined by a convex program and can thus be
computed efficiently if the dimension of problem is poly-
nomially bounded. This, unfortunately, is not the case
when we work over the boolean hypercube {0, 1}n and
aim for a runtime that is polynomial in n. To overcome
this problem we introduce the natural notion of an ap-
proximate Bregman projection for which the increase in
distance is bounded by some parameter. We then show
that the guarantees of the multiplicative weights algo-
rithm are roughly preserved when working with good
enough approximate projections. More importantly, we
give an efficient randomized algorithm for computing
approximate Bregman projections onto the set of high
density measures. This algorithm uses an efficient im-
plicit characterization of the projection, as well as the
fact that the density parameter can be approximated
efficiently from Chernoff bounds.

3 Probability Measures and Bregman
Projections

Let X denote a finite set. A discrete measure on the
set X is a function M : X → [0, 1]. We let |M | =



∑
x∈X M(x) denote the weight of M and µ(M) =

|M |/|X| denotes its density.
The Kullback-Leibler divergence between two mea-

sures M, N is defined as

(3.1) D(M ||N) =
∑

x

M(x) log
M(x)
N(x)

+N(x)−M(x).

Further, let Γ ⊆ R|X| be a non-empty closed convex set
of measures. Then, the Bregman projection of N onto
the set Γ is defined as

(3.2) PΓ N = arg min
M∈Γ

D(M ||N).

One can show that for every measure N , the minimum
in (3.2) exists and is unique. Furthermore, we have the
following theorem.

Theorem 3.1. (Bregman, 1967) Let N, M be mea-
sures such that M ∈ Γ. Then,

(3.3) D(M ||PΓ N) + D(PΓ N ||N) ≤ D(M ||N).

In particular,

(3.4) D(M ||PΓ N) ≤ D(M ||N).

We refer the reader to the text book by Censor and
Zenios [1] for a proof of Bregman’s theorem and further
information on the subject.

3.1 High Density Measures. We define

Γδ = {M | µ(M) ≥ δ}
as the set of measures having density at least δ. When
δ is clear from the context, we may omit it. For every
δ ∈ [0, 1], the set Γδ is closed and convex.

Remark 3.1. We will not need this fact, but we point
out that high density measures correspond to smooth
probability distributions. Indeed, the measure M has
density at least δ if and only if the probability distribu-
tion 1

|M |M satisfies 1
|M |M(x) ≤ 1

δ|X| for all x ∈ X.

We will denote the Bregman projection operator onto
the set Γδ by Pδ. The projection operator Pδ has the
following very useful characterization.

Lemma 3.1. Let N be a measure with support at least
δ2n and let c ≥ 1 be the smallest constant such that
the measure M∗ = min(1, c · N) has density δ. Then,
Pδ N = M∗.

Proof. Consider the function f(M) = D(M ||N) de-
fined over the polytope Γδ. Since f is convex and dif-
ferentiable in every variable we have

f(M) ≥ f(M∗) +∇f(M∗)T (M −M∗)

for every M ∈ Γδ. Hence, in order to show that
M∗ minimizes the function f , it suffices to verify the
optimality condition

∇f(M∗)T (M −M∗) ≥ 0

for all M ∈ Γδ. It is easy to check that the gradient
∇f(M∗) is given by

∇f(M∗) =
(

log
M∗(x)
N(x)

: x ∈ X

)
.

Whenever x is such that M∗(x) = 1, we must have
N(x) ≥ 1

c and hence log(M∗(x)/N(x)) = log 1
N(x) ≤

log c. But, M(x)−M∗(x) = M(x)− 1 ≤ 0. Thus,

log
M∗(x)
N(x)

· (M(x)−M∗(x)) ≥ log c · (M(x)−M∗(x)).

On the other hand, if M∗(x) < 1, then
log(M∗(x)/N(x)) = log(cN(x)/N(x)) = log c. Hence,

∑
x

log
M∗(x)
N(x)

· (M(x)−M∗(x)
)

≥ log c ·
∑

x

M(x)−M∗(x).

Finally, log c ≥ log 1 = 0 and
∑

x∈X

M(x) ≥
∑

x∈X

M∗(x),

since otherwise M would have density less than δ.

3.2 Approximate Bregman Projections. Com-
puting the Bregman projection exactly requires time |X|
in general, since we may need to examine the weight of
every point in X. We will be interested in computing
approximations of the following kind more efficiently.

Definition 3.1. We call a measure Ñ an α-
approximation of PΓN if for all M ∈ Γ we have

1. Ñ ∈ Γ, and,

2. D(M || Ñ) ≤ D(M ||PΓ N) + α.

Whether or not we can compute such an approximation
more efficiently also depends upon how efficiently we
can represent the resulting measure. In the case of Pδ

we have an efficient implicit representation by virtue of
the characterization in Lemma 3.1. In fact, we will now
show how to compute the projection Pδ approximately.
The proof also uses the fact that we can estimate
the density parameter of a measure efficiently using
Chernoff bounds. Notice, however, if N is a measure



of density δ0 < δ, then the right scaling factor c may
not simply be c0 = δ/δ0. This is because the weight of
some points might get clipped at the value 1. In fact, in
general c can be arbitrarily large. To see this consider
the measure supported on a δ fraction of the inputs
which is 1 at every point on its support except a single
point where it may be arbitrarily small but positive.
On the other hand, when given a bound on c, we can
iteratively search for the right scaling factor.

Lemma 3.2. Let N be a measure such that Pδ N =
min(1, c ·N) for c ≤ 1 + γ and suppose we have oracle
access to the measure N . Further, assume we can
sample uniform elements from the domain X in time t.
Then, we can compute an implicitly represented εδ|X|-
approximation of Pδ N in time

O

(
t

δε2
(
log log γ

ε + log
1
η

))

with probability 1− η.

Proof. By Lemma 3.1, the projection of N onto the
set of density-δ measures is computed by finding the
smallest factor c ≥ 1 such that the measure Pδ N =
min(1, c ·N) has density δ.

Claim 1. Suppose Ñ is a measure such that

1. Ñ(x) ≥ Pδ N(x) for all x ∈ X,

2. |Ñ | − |Pδ N | ≤ εδ|X|.
Then, Ñ is an εδ|X|-approximation of Pδ N

Proof. Let M ∈ Γδ. Then,

D(M || Ñ)−D(M ||Pδ N)

=
∑

x

M(x) log
Pδ N(x)

Ñ(x)
+ |Ñ | − |Pδ N |

≤ |Ñ | − |Pδ N |(by 1)
≤ εδ|X|.(by 2)

Now, suppose we can compute a factor c̃ ∈ [1, 1 + γ]
such that the measure Ñ = min(1, c̃ ·N) satisfies

δ ≤ µ(Ñ) ≤ (1 + ε)δ.

Then it is easy to check that Ñ will satisfy the assump-
tions of Claim 1. Indeed, we have c̃ ≥ c and hence
the first requirement. The second one follows since
|Pδ N | ≥ δ|X|.

We will compute c̃ using binary search over the
interval [1, 1 + γ]. At each step, we estimate the weight
of our candidate measure to within a multiplicative

error of 1 + Ω(ε) using random samples. We can
relate the number of samples to the error probability
using Hoeffding’s bound. As soon as the weight of our
candidate lies in an appropriately small interval, we
terminate. At every step of binary search we proceed as
follows:

1. Let c∗ be the current candidate value for c̃ and let
N∗ = min(1, c∗ ·N).

2. Compute an estimate µ̂ of the density µ(N∗):
Sample s points x1, . . . , xs ∈ {0, 1}n uniformly at
random and compute the average weight

µ̂ =
1
s

s∑

i=1

N∗(xi).

Notice, N∗(xi) are independent random variables
in the interval [0, 1] such that E[N∗(xi)] = µ(N∗).
Hence, by Chernoff bounds

Pr
(|µ̂− µ(N∗)| > εδ

3

) ≤ exp(−Ω(sε2δ)).

3. If µ̂ ∈ [δ + εδ
3 , (1 + ε)δ− εδ

3 ], terminate. Otherwise,
we continue with binary search.

Binary search will perform at most O(log γ
ε ) steps

in the worst case. If in every step our density estimate
is correct, then the algorithm terminates with an εδ|X|-
approximation.

To apply a union bound over the number of steps
and further achieve the desired over all error probability
of η, we want that

O(log(γ/ε)e−Ω(sε2δ)) ≤ η,

which is true for

s = O
( 1

δε2
(log log γ

ε + log 1
η )

)
.

Remark 3.2. Our algorithm to compute the approx-
imate projection is essentially optimal up to the
doubly-logarithmic factor log log(γ/ε), since at least
Ω( 1

δε2 log 1
η ) samples are required to estimate the den-

sity parameter to within the multiplicative error of 1+ ε
and error probability bounded by η.

4 Online Learning with Approximate Bregman
Projections

In this section, we consider the following standard model
of online learning. In every round t = 1 . . . T , we
commit to a measure M (t) over some set X. Next,
every point x ∈ X is associated adversarially with
a penalty m(t)

x ∈ [0, 1], the t-th component of the



penalty vector m(t). We incur the loss defined as
L(M (t),m(t)) =

∑
x∈{0,1}n M (t)(x)m(t)

x . We may think
of the loss as proportional to the expected penalty
when inputs are sampled according to the measure
M (t). Based on all information from previous rounds,
we compute an updated measure M (t+1). Ultimately,
our goal is to compute a sequence of measures such
that the total loss

∑T
t=1 L(M (t),m(t)) is not much larger

than the loss of every fixed measure M in hindsight,
i.e.,

∑T
t=1 L(M,m(t)). An additional constraint in our

setup is that we are given a closed convex set Γ and
demand that every measure M (t) ∈ Γ. We will enforce
this constraint by replacing every measure M (t) by its
approximate projection onto the set Γ.

We have the following lemma.

Input: Closed convex set of measures Γ
Initial measure M (1) ∈ Γ
Parameters γ ∈ (0, 1

2 ), α ≥ 0 and T ∈ N
For t = 1, 2, . . . , T rounds:

1. Let m(t) be an arbitrary penalty.

2. Define N (t+1) coordinate-wise using the follow-
ing update rule

N (t+1)(x) = (1− γ)m(t)
x M (t)(x).

3. Let M (t+1) be an α-approximation of the mea-
sure PΓN (t+1).

Output: The sequence of measures
M (1),M (2), . . . ,M (T ).

Figure 1: Multiplicative weights update using approxi-
mate Bregman projections

Lemma 4.1. (Total Loss) For every measure M ∈
Γ, the algorithm depicted in Figure 4 achieves the
following bound in the above game,

T∑
t=1

L(M (t),m(t))− α

γ
T ≤ (1 + γ)

T∑
t=1

L(M,m(t))

+D(M ||M (1)).

Proof. By definition,

D(M ||N (t+1))−D(M ||M (t))

=
∑

x

M(x) log
M t(x)

N (t+1)(x)
+ |N (t+1)| − |M (t)|.

Also,

∑
x

M(x) log
M t(x)
N (t+1)

=
∑

x

M(x) log((1− γ)−m(t)
x )

≤ γ(1 + γ)
∑

x

M(x)m(t)
x

= γ(1 + γ)L(M,m(t)),

where we used that

− ln(1− γ) ≤ γ(1 + γ)

for γ ≤ 1
2 . On the other hand,

|N (t+1)| =
∑

x

(1− γ)m(t)
x M (t)(x)

≤
∑

x

(1− γm(t)
x )M (t)(x)

= |M (t)| − γ
∑

x

M (t)(x)m(t)
x

= |M (t)| − γL(M (t),m(t)).

Hence,

D(M ||N (t+1))−D(M ||M (t))
= γ(1 + γ)L(M,m(t))− γL(M (t),m(t)).

Furthermore, by Bregman’s Theorem,

D(M ||N (t+1)) ≥ D(M ||PΓN (t+1))
≥ D(M ||M (t+1))− α,

since M (t+1) is an α-approximation of PΓ N (t+1). Hence,
we have established the bound

D(M ||M (t+1))−D(M ||M (t))

= γ(1 + γ)
∑

x

M(x)m(t)
x

− γ
∑

x

M (t)(x)m(t)
x + α.(4.5)

To conclude the proof, we sum up (4.5) from t = 1 to T
and simplify the telescoping sum.

5 A Uniform Hard-Core Lemma

In this section, we prove our main theorem which we
restate below.

Theorem 5.1. (Theorem 1.1 restated) Let
{fn}n∈N denote a family of boolean function and let
δ, γ : N → (0, 1). Suppose, there exists an algorithm A
which given oracle access to any measure M over
{0, 1}n of density δ(n), returns a circuit C of size at
most s(n) such that Prx∼M [C(x) = fn(x)] ≥ 1

2 + γ(n).



Then there is an algorithm B which for every n
and oracle access to fn with probability 1− η (over the
internal randomness of B) returns a circuit C ′ such that
C ′ computes fn correctly on at least a 1− δ(n) fraction
of all inputs. Furthermore,

1. the algorithm B works in O( 1
γ2 log 1

δ ) rounds with
one call to A in each round and the runtime of B
in every round is linear in n, log 1

η , 1
δ , 1

γ4 and the
cost of simulating A,

2. the circuit C ′ is the majority of O( 1
γ2 log 1

δ ) circuits
of size s(n).

Input: Oracle access to a boolean function fn

Parameters δ > 0, γ ∈ (0, 1
2 ) and T ∈ N

Algorithm A satisfying the assumption
of Theorem 1.1

For t = 1, 2, . . . , T = 4
γ2 log 1

δ + 1 rounds:

1. Run algorithm A with oracle access to M (t) so as
to obtain a circuit C(t).

Here, M (1) denotes the measure that is δ at every
point.

2. Define m(t) by putting m(t)
x = 1 if C(t)(x) = fn(x)

and 0 otherwise.

3. Define N (t+1) coordinate-wise using the following
update rule

N (t+1)(x) = (1− γ)m(t)
x M (t)(x).

4. Let M (t+1) be an (γ2δ2n/4)-approximation of
Pδ N (t+1).

Output: The circuit
C ′ = MAJORITY(C(1), C(2), . . . , C(T ))

Figure 2: Outline of the smooth Boosting algorithm
used in the proof of the hard-core lemma.

5.1 Proof of Theorem 1.1. In Figure 2, we outline
the algorithm stated in the conclusion of our theorem.
We will first analyze the error of the circuit that the
algorithm outputs assuming all steps in our algorithm
can be computed efficiently. Second, we will analyze
the runtime of our algorithm (specifically Step 4) using
Lemma 3.2.

5.1.1 Error Bound. We claim that the circuit C ′

computes fn correctly on a 1− δ fraction of the inputs.

To argue this point we will appeal to Lemma 4.1. Let
E = {x ∈ {0, 1}n | C ′(x) 6= f(x)}, i.e., those points
on which the majority circuit C ′ errs. Further, suppose
|E| = δ2n. Let W = δ2n.

First notice, it follows from our assumption that

T∑
t=1

L(M (t),m(t))

=
T∑

t=1

|M (t)| Pr
x∼M(t)

[C(t)(x) = f(x)]

≥ (1
2

+ γ
)
TW,(5.6)

where we used that |M (t)| ≥ W .
Further, notice that

∑T
t=1 m(t)

x is equal to the
number of circuits C(t) which correctly compute fn

on input x. Since C ′ is a majority circuit, we have∑T
t=1 m(t)

x ≤ 1
2T whenever x ∈ E. Let UE denote the

uniform measure over E, i.e., UE is equal to 1 on every
point in E and 0 otherwise. We have |UE | = δ2n. Then,

(5.7)
T∑

t=1

L(UE ,m(t)) =
∑

x∈E

T∑
t=1

m(t)
x ≤ 1

2
TW.

Moreover,

D(UE ||M (1)) =
∑

x∈E

log
1

M (1)(x)
+ |M (1)| − |UE |

= W log 1
δ ,

since M (1)(x) = δ and |M (1)| = |UE |. Thus, we can
apply Lemma 4.1 to (5.6) and (5.7) with M = UE to
conclude

(5.8)
(1
2

+ γ
)
TW − α

γ
T ≤ (1

2
+

γ

2
)
TW +

W

γ
log

1
δ
.

That is,
γ

2
T − α

γW
T ≤ 1

γ
log

1
δ
.

For α ≤ γ2W
4 , the LHS is at least γ

4 T and hence,

T ≤ 4
γ2

log
1
δ
.

So, if we run our algorithm for T ≥ 4
γ2 log 1

δ +1 rounds,
then we can be sure that |E|/2n < δ.

5.1.2 Computing the approximation. It remains
to show how to compute the projection in Step 4. Let
M = M (t) for some t ∈ {1, . . . , T} be a measure of
density δ and suppose we apply the update rule in Step 3



so as to obtain a measure N = N (t+1). At this point we
know that

(5.9) µ(N) ≥ (1− γ)δ.

Recall, by Lemma 3.1, the projection is given by Pδ N =
min(1, c ·N) for some particular c. It follows from (5.9)
that

(5.10) 1 ≤ c ≤ 1
1− γ

≤ 1 + 2γ.

Hence, we can apply Lemma 3.2 where we set η = η′

T (to
achieve the over all error probability of η′) and ε = 4/γ2.
As a result, the projection is computed in time

O
( 1

δε2
(log

η′

T
+ log log γ

ε )
)

= O
( 1

δε2
log

η′

T

)
.

This concludes the proof of Theorem 1.1. ¤

5.2 Improving the success probability. The con-
clusion of Theorem 1.1 gives us an algorithm B which
computes fn correctly on a 1 − δ(n) fraction of the in-
puts. Holenstein [5] already showed how this can be
improved to 1− δ(n)/2 (which is in fact optimal).

For simplicity we only briefly outline how this is
done. Let C be the collection of T circuits obtained
at the end of the algorithm. Let S be any set of size
W = δ2n, and let US be the uniform measure on S.
We claim that a randomly chosen circuit computes the
value of f on a randomly chosen input from S with
probability more than 1/2. Otherwise, we have

T∑
t=1

L(US ,m(t)) =
∑

x∈S

T∑
t=1

m(t)
x ≤ 1

2
TW.

Following the argument of Section 5.1.1 with US in place
of UE , we get a contradiction for T > 4

γ2 log 1
δ . Now, the

construction of Claim 2.15 of [5] is directly applicable to
the circuits in C, and it yields a circuit which computes
fn correctly on 1− δ(n)/2 fraction of inputs.

Acknowledgments

We would like to thank Thomas Holenstein and David
Steurer for helpful discussions on this work. The
third author would like to thank Manfred Warmuth for
showing him the Bregman projection idea.

References

[1] Yair Censor and Stavros A. Zenios. Parallel Optimiza-
tion — Theory, Algorithms, and Applications. Oxford
University Press, 1997.

[2] Yoav Freund. Boosting a weak learning algorithm by
majority. In Proc. 3rd COLT, 1990.

[3] Yoav Freund and Robert E. Schapire. A decision-
theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and
System Sciences, 55(1):119–139, August 1997.

[4] Mark Herbster and Manfred K. Warmuth. Tracking
the best linear predictor. Journal of Machine Learning
Research, 1:281–309, 2001.

[5] Thomas Holenstein. Key agreement from weak bit
agreement. In Proc. 37th ACM STOC, 2005.

[6] Thomas Holenstein. Pseudorandom generators from
one-way functions: A simple construction for any
hardness. In Proc. of 3rd TCC. Springer, 2006.

[7] Russell Impagliazzo. Hard-core distributions for some-
what hard problems. In Proc. 36th IEEE FOCS, 1995.

[8] Russell Impagliazzo, Ragesh Jaiswal, and Valentine
Kabanets. Approximately list-decoding direct product
codes and uniform hardness amplification. In Proc.
47th IEEE FOCS, 2006.

[9] Russell Impagliazzo, Ragesh Jaiswal, Valentine Ka-
banets, and Avi Wigderson. Uniform direct product
theorems: Simplified, optimized and derandomized. In
Proc. 40th ACM STOC, 2008.

[10] Satyen Kale. Boosting and hard-core set constructions:
a simplified approach. Electronic Colloquium on Com-
putational Complexity (ECCC), (131), 2007.

[11] Adam R. Klivans and Rocco A. Servedio. Boosting
and hard-core set construction. Machine Learning,
51(3):217–238, 2003.

[12] Robert E. Schapire. The strength of weak learnability.
Machine Learning, 5:197–227, 1990.

[13] Rocco A. Servedio. Smooth boosting and learning
with malicious noise. Journal of Machine Learning
Research, 4:633–648, 2003.

[14] Luca Trevisan. List-decoding using the XOR lemma.
In Proc. of 44th IEEE FOCS, 2003.

[15] Luca Trevisan. On uniform amplification of hardness
in NP. In Proc. 37th ACM STOC, 2005.

[16] Manfred K. Warmuth and Dima Kuzmin. Randomized
pca algorithms with regret bounds that are logarithmic
in the dimension. In In Proc. of NIPS, 2006.

[17] Andrew C. Yao. Theory and applications of trapdoor
functions (extended abstract). In 23rd FOCS, pages
80–91. IEEE, 1982.


