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Abstract. We consider the problem of testing graph expansion (either
vertex or edge) in the bounded degree model [10]. We give a property
tester that given a graph with degree bound d, an expansion bound α,
and a parameter ε > 0, accepts the graph with high probability if its
expansion is more than α, and rejects it with high probability if it is ε-
far from any graph with expansion α′ with degree bound d, where α′ < α

is a function of α. For edge expansion, we obtain α′ = Ω(α2

d
), and for

vertex expansion, we obtain α′ = Ω(α2

d2 ). In either case, the algorithm

runs in time Õ(n(1+µ)/2d2

εα2 ) for any given constant µ > 0.

1 Introduction

With the presence of large data sets, reading the whole input may be a luxury.
It becomes important to design algorithms which run in time that is sublinear
in (or even independent of) the size of the input. Sublinear algorithms are often
achieved by dealing with a relaxed version of the decision problem. In property
testing [7, 14], we wish to accept inputs that satisfy some given property, and
reject those that are sufficiently “far” from having that property. There is usually
a well-defined notion of the “distance” of an input to a given property. In recent
times, many advances have been made on algorithms for testing a variety of
combinatorial, algebraic, and geometric properties (see surveys [5, 6, 13]). For
property testing in graphs [7], there has been a large amount of work for testing
in dense graphs. Here, it is assumed that the graph is given as an adjacency
matrix. There are very general results about classes of properties that can tested
in time independent of the size of the graph ([1, 2]).

The problem of property testing for bounded degree graphs was first dealt
with by Goldreich and Ron [8]. The input graph G is assumed that have a
constant degree bound d. The graph G is represented by adjacency lists - for
every vertex v, there is list of vertices (of size at most d) adjacent to v. This

? Part of this work was done when the author was at Princeton University.



allows testing algorithms to perform walks in the graph G. Given a property P
and positive ε < 1, the graph G is ε-far from having P if G has to be modified
at more than εnd edges for it to have property P. Note that this includes both
additions and deletions, and we want to keep the degree bound constant (usually,
we require that the degree bound d is preserved). In this model, there aren’t
any general results about testable properties as in the case of dense graphs.
Czumaj and Sohler [3] made the first attempt in this direction, and showed
testability results for classes of graphs that do not contain expanders. Using
random walks, Goldreich and Ron [9] proved that bipartiteness is testable with
Õ(
√

n) queries to the graph. In later work, Goldreich and Ron [10] posed the
question of testing expansion. Given positive parameters λ, ε < 1, they provided
a Õ(

√
n)-time algorithm that was conjectured to accept every graph G whose

second largest eigenvalue λ(G) is less than λ, and reject every graph that is ε-far
from having second eigenvalue less than λ′ (here λ′ could be much larger than
λ, but λ′ ≤ λΩ(1)). The running time is essentially tight (in n), since it has been
proven that a property tester for expansion requires Ω(

√
n) queries [9].

One of the major parts of the analysis of the algorithm of [9] for bipartiteness
deals with the expansion properties of the graph. Their main technique involves
performing random walks on the graph. In the adjacency list model, the basic
operation that we possess is that of walking in the graph, and random walks seem
like a very natural operation to perform. This immediately raises the question of
whether random walks can be used to test expansion. Furthermore, the results
of [3] show that classes of graphs which do not contain expanders can be tested.
All of this indicates that, regarding property testing in bounded degree graphs,
testing expansion is a very natural and central issue. The problem of designing a
property tester for expansion remained open for more than 6 years, until recently,
when Czumaj and Sohler [4] provided a tester for vertex expansion. We describe
this problem more formally below.

We are given an input graph G = (V,E) on n vertices with degree bound
d. Assume that d is a sufficiently large constant. Given a cut (S, S̄) (where
S̄ = V \ S) in the graph, let E(S, S̄) be the number of edges crossing the cut.
The edge expansion of the cut is E(S,S̄)

min{|S|,|S̄|} . The edge expansion of the graph is
the minimum edge expansion of any cut in the graph. The vertex expansion of
the cut is |∂S|

|S| , where ∂S is the set of nodes in S̄ that are adjacent to nodes in
S. The vertex expansion of the graph is the minimum vertex expansion of any
cut in the graph.

Hereafter, when we use the term “graph”, we are only concerned with graphs
having degree bound d. We are interested in designing a property tester for
expansion (either edge or vertex). The graph is represented by an adjacency list,
so we have constant time access to the neighbors of any vertex. Given parameters,
α > 0 and ε > 0, we want to accept to all graphs with expansion greater than α,
and reject all graphs that ε-far from having expansion less than α′ < α (where α′

is some function of α). This means that G has to be changed at least εnd edges
(either removing or adding, keeping the degree bound d) to make the expansion
at least α′.



1.1 Our results

The problem of testing vertex expansion was first discussed by Czumaj and
Sohler [4]. Their algorithm was based on that of Goldreich and Ron [10], and they
used combinatorial techniques to prove the correctness of their algorithm. Their
tester runs in time O(α−2ε−3d2

√
n ln(n/ε)) and has parameter α′ = Θ( α2

d2 log n ).
Independently, using the same algorithm but via algebraic proof techniques,

we gave an analysis [11] which allowed us to remove the dependence of n in α′,
and we obtain α′ = Θ(α2

d2 ) for vertex expansion and α′ = Θ(α2

d ) for edge expan-
sion. This improvement in α′ is significant since in most algorithmic applications
of expanders, we need the graph to have constant expansion, and our property
tester allows us to distinguish graphs which have constant expansion from those
that are far from having (a smaller) constant expansion.

However, in the initial unpublished version of this paper which appeared as a
tech report on ECCC [11], we prove that the tester rejects graphs that are ε-far
from any graph of expansion α′ with degree bound 2d, rather than degree bound
d. In this version of the paper, in addition to our previous results, we also show
how a small modification to our earlier techniques improves the degree bound
to d. We recently found out that independently, the degree bound improvement
was also obtained by Nachmias and Schapira [12] using a combination of our
techniques and those of Czumaj and Sohler.

To describe our results, we set up some preliminaries. Consider the following
slight modification of the standard random walk on the graph: starting from
any vertex, the probability of choosing any outgoing edge is 1/2d, and with the
remaining probability, the random walk stays at the current node. Thus, for a
vertex of degree d′ ≤ d, the probability of a self-loop is 1−d′/2d ≥ 1/2. This walk
is symmetric and reversible; therefore, its stationary distribution is uniform over
the entire graph. Consider a cut (S, S̄) with |S| ≤ n/2. The conductance of this
cut is the probability that, starting from the stationary distribution the random
walk leaves the set S in one step, conditioned on the event that the starting
state is in S. For our chain, the conductance thus becomes E(S, S̄)/2d|S|, which
is just the expansion of the cut divided by 2d. The conductance of the graph,
ΦG, is the minimum conductance of any cut in the graph.

Our goal is to design a property tester for graph conductance. The tester is
given two parameters Φ and ε. The tester must (with high probability3) accept
if ΦG > Φ and reject if G is ε-far from having ΦG > cΦ2 (for some absolute
constant c). Our tester is almost identical to the one described in [10]. Now we
present our main result:

Theorem 1. Given any conductance parameter Φ, and any constant µ > 0,
there is an algorithm which runs in time O(n(1+µ)/2 log(n) log(1/ε)

εΦ2 ) and with high
probability, accepts any graph with degree bound d whose conductance is at least
Φ, and rejects any graph that is ε-far from any graph of conductance at least cΦ2

with degree bound d, where c is a constant4 which depends on µ.
3 Henceforth, “with high probability” means with probability at least 2/3.
4 We can set c = µ/400.



Remark: In Theorem 1, even though we have specified µ to be a constant,
the theorem still goes through even if µ were a function of n, though naturally
the conductance bound degrades. For instance, if µ = 1/ log(n), then the running
time of our algorithm matches that of [4], but the conductance bound becomes
Ω(Φ2/ log(n)).

In our bounded degree graph model, the following easy relations hold:

edge expansion = conductance/2d,

(vertex expansion)/2 ≥ conductance ≥ (vertex expansion)/2d.

Using these relations, we immediately obtain property testers for vertex and edge
expansion for a given expansion parameter α by running the property tester for
conductance with parameter Φ = α/2d, and we get the following corollary to
Theorem 1:

Corollary 1. Given any expansion parameter α, and any constant µ > 0, there
is an algorithm which runs in time O(d2n(1+µ)/2 log(n) log(1/ε)

εα2 ) and with high prob-
ability, accepts any graph with degree bound d whose expansion is at least α, and
rejects any graph that is ε-far from any graph of expansion at least α′ with degree
bound d. For edge expansion, α′ = Ω(α2

d ), and for vertex expansion, α′ = Ω(α2

d2 ).

Goldreich and Ron’s formulation of the problem [10] asks for a property
testing algorithm that given a parameter λ < 1, accepts any graph with second
largest eigenvalue (of the transition matrix of the lazy random walk) less than
λ, and rejects any graph that is ε-far from having second largest eigenvalue
less than λ′, for some λ′ ≤ λΩ(1). Given a graph G, the following well known
inequality (see [15]) states that the second largest eigenvalue λ(G) satisfies

1− ΦG ≤ λ(G) ≤ 1− Φ2
G/2.

Now, if we assume that λ ≤ 1−α for some constant α > 0, then we obtain a
property tester in the Goldreich-Ron formulation, for λ′ = (1− c2(1− λ)4/2) ≤
λΩ(1), since λ ≤ 1−Ω(1). Here, c is the constant from Theorem 1. We run our
property tester for conductance with parameter Φ = 1 − λ. For any graph G
with λ(G) ≤ λ, we have ΦG ≥ Φ, so the tester accepts G. Any graph G with
ΦG ≥ cΦ2 has λ(G) ≤ λ′, so the tester rejects any graph which is ε-far from
having λ(G) ≤ λ′. Thus, we have the following corollary to Theorem 1:

Corollary 2. Given any parameter λ < 1 − Ω(1), and any constant µ > 0,
there is an algorithm which runs in time O(n(1+µ)/2 log(n) log(1/ε)

ε(1−λ)2 ) and with high
probability, accepts any graph with degree bound d with λ(G) ≤ λ, and rejects
any graph that is ε-far from having λ(G) ≤ λ′ with degree bound d, for some
λ′ ≤ λΩ(1).

2 Description of the Property Tester

We first define a procedure called Vertex Tester which will be used by the
expansion tester.



Vertex Tester
Input: Vertex v ∈ V .
Parameters: ` = 2 ln n/Φ2 and m = 8n(1+µ)/2.

1. Perform m random walks of length ` from s.
2. Let A be the number of pairwise collisions between the endpoints of these

walks.
3. The quantity A/

(
m
2

)
is the estimate of the vertex tester. If A/

(
m
2

) ≥ (1 +
2n−µ)/n, then output Reject, else output Accept.

Now, we define the Conductance Tester.

Conductance Tester
Input: Graph G = (V, E).
Parameters: t = Ω(ε−1) and N = Ω(log(ε−1)).

1. Choose a set S of t random vertices in V .
2. For each vertex v ∈ S:

(a) Run Vertex Tester on v for N trials.
(b) If a majority of the trials output Reject, then the Conductance

Tester aborts and outputs Reject.
3. Output Accept.

3 Proof of Theorem 1

Before we give the details of the proof, we give a high level exposition of the
ideas. We characterize vertices of the graph as strong or weak (this was already
implicit in the ideas of [10]). Random walks of length ` starting from strong
vertices mix very rapidly, while those from weak vertices do not. We expect the
vertex tester to accept strong vertices and reject weak ones.

One of the main differences from the result of Czumaj-Sohler is that we
have a very strict definition of strong vertices. We need the mixing from strong
vertices to be very rapid, and this is what allows us to remove the dependence
of n from α′. In the main technical contribution of this paper, we prove that a
bad conductance cut will contain a sufficiently large number of weak vertices.
We get very strong quantitative bounds using algebraic techniques to analyze
the random walks starting from inside the bad cut. We then show that if there
are very few weak vertices in G (and therefore, the tester will probably accept
the graph), there is a patch-up procedure that can add εnd edges to boost the
expansion to α′ and preserves the degree bound. This completes the proof.

3.1 Preliminaries

Let us fix some notation. The probability of reaching u by performing a random
walk of length l from v is pl

v,u. Denote the (row) vector of probabilities pl
v,u



by p l
v . The collision probability for random walks of length l starting from v is

denoted by γl(v) - this is the probability that two independent random walks
of length l starting from v will end at the same vertex. It is easy to see that
γl(v) = ‖pv‖ =

∑
v(pl

v,u)2 (henceforth, we use ‖ · ‖ to denote the L2 norm). Let
1 denote the all 1’s vector. The norm of the discrepancy from the stationary
distribution will be denoted by ∆l(v):

∆l(v)2 = ‖p l
v − 1/n‖2 =

∑

u∈V

(pl
v,u − 1/n)2 =

∑

u∈V

(pl
v,u)2 − 1/n = γl(v)− 1/n.

Since l will usually be equal to `, in that case we drop the subscripts (or su-
perscripts). The relationship between ∆(v) and γ(v) is central to the functioning
of the tester. The parameter ∆(v) is a measure of how well a random walk from
s mixes. The parameter γ(v) can be estimated in sublinear time, and by its
relationship with ∆(v), allows us to test mixing of random walks in sublinear
time. The following is basically proven in [10]:

Lemma 1. The estimate of γ(v), viz. A/
(
m
2

)
, provided by the Vertex Tester

lies outside the range [(1− 2n−µ)γ(v), (1 + 2n−µ)γ(v)] with probability < 1/3.

Proof given in full version. For clarity of notation, we set σ = n−µ/4. We now
have the following corollary:

Corollary 3. The following holds with probability at least 5/6. For all vertices
v in the random sample S chosen by the Conductance Tester, if γ(v) <
(1+σ)/n, then the majority of the N trials of Vertex Tester run on v return
Accept. If γ(v) > (1 + 6σ)/n, then the majority of the N trials of Vertex
Tester run on v return Reject.

This is an easy consequence of the fact that we run N = Ω(log(ε−1)) trials,
by an direct application of Chernoff’s bound and using Lemma 1. We are now
ready to analyze the correctness of our tester.

First, we show the easy part. Let M denote the transition matrix of the
random walk. The top eigenvector of M is 1. We will also need the matrix
L = I−M , which is the (normalized) Laplacian (I denotes the identity matrix).
The eigenvalues of L are of the form (1− λ), where λ is an eigenvalue of M .

Lemma 2. If ΦG ≥ Φ, then the Conductance Tester accepts with probability
at least 2/3.

Proof. Let λG be the second largest eigenvalue of M . It is well known (see, e.g.,
[15]) that λG ≤ 1−Φ2

G/2 ≤ 1−Φ2/2. Thus, we have for any v ∈ V , if ev denotes
the row vector which is 1 on coordinate v and zero elsewhere,

‖pv − 1/n‖2 = ‖(ev − 1/n)M `‖2
≤ ‖ev − 1/n‖2λ2`

G

≤ (1− Φ2/2)4Φ−2 ln n

≤ 1/n2.



The second inequality follows because ev − 1/n is orthogonal to the top eigen-
vector 1. As a result, ∆(v)2 ≤ 1/n2, and γ(v) < (1 + σ)/n for all v ∈ V . By
Corollary 3, the tester accepts with probability at least 2/3. ut

We now show that if G is ε-far from having conductance Ω(Φ2), then the
tester rejects with high probability. Actually, we will prove the contrapositive :
if the tester does not reject with high probability, then G is ε-close to having
conductance Ω(Φ2). Call a vertex s weak if γ(v) > (1 + 6σ)/n, all others will
be called strong. Suppose there are more than 1

25εn weak vertices. Then with
probability at least 5/6, the random sample S chosen by the Conductance
Tester has a weak vertex, since the sample has Ω(ε−1) random vertices. Thus,
the Conductance Tester will reject with high probability.

Let us therefore assume that there are at most 1
25εn weak vertices. Now, we

will show that εnd edges can be added to make the conductance Ω(Φ2).

3.2 Algebraic Lemmas

We now state and prove the key algebraic lemmas connecting bad conductance
cuts to bad mixing. The quantitative bounds given here are the main tool used
to prove that if the graph G has few weak vertices, then G is close to being an
expander.

Lemma 3. Consider a set S ⊂ V of size s ≤ n/2 such that the cut (S, S) has
conductance less than δ. Then, for any integer l > 0, there exists a node v ∈ S
such that ∆l(v) > (2

√
s)−1(1− 4δ)l.

Proof. Denote the size of S by s (s ≤ n/2). Let us consider the starting distri-
bution p where:

pv =
{

1/s v ∈ S
0 v /∈ S

Let u = p−1/n. Note that uM l = pM l−1/n. Let 1 = λ1 ≥ λ2 · · · ≥ λn > 0
be the eigenvalues of M and f1, f2, · · · , fn be the corresponding orthogonal unit
eigenvectors. Note that f1 = 1/

√
n. We represent u in the orthonormal basis

formed by the eigenvectors of M as u =
∑

i αif i. Here, α1 = 0, since u · 1 = 0.

∑

i

α2
i = ‖u‖22

= s

(
1
s
− 1

n

)2

+
n− s

n2

=
1
s
− 1

n
.

Taking the Rayleigh quotient with the Laplacian L:

u>Lu = u>Iu− u>Mu

= ‖u‖22 −
∑

i

α2
i λi.



On the other hand, using the fact that the conductance of the cut (S, S̄) is less
than δ, we have

u>Lu =
∑

i<j

Mij(ui − uj)2 < 2δds× 1
2d
× 1

s2
=

δ

s
.

Putting the above together:

∑

i

α2
i λi >

(
1
s
− 1

n

)
− δ

s

=
1− δ

s
− 1

n
.

If λi > (1 − 4δ), call it heavy. Let H be the index set of heavy eigenvalues,
and H̄ be the index set of the rest. Since

∑
i α2

i λi is large, we expect many of
the αi corresponding to heavy eigenvalues to be large. This would ensure that
the starting distribution p will not mix rapidly. We have

∑

i∈H

α2
i λi +

∑

i∈H̄

α2
i λi >

1− δ

s
− 1

n
.

Setting x =
∑

i∈H α2
i :

x + (
∑

i

α2
i − x)(1− 4δ) >

1− δ

s
− 1

n
.

We therefore get:

4δx +
(

1
s
− 1

n

)
(1− 4δ) >

1− δ

s
− 1

n

∴ x >
3
4s
− 1

n

≥ 1
4s

. ∵ n ≥ 2s (1)

Note that uM l =
∑

i αiλ
lf i. Thus,

‖uM l‖22 =
∑

i

α2
i λ

2l
i

≥
∑

i∈H

α2
i λ

2l
i

>
1
4s

(1− 4δ)2l.

So, ‖uM l‖2 > 1
2
√

s
(1− 4δ)l. Note that u = 1

s

∑
v∈S(ev − 1

n ), and hence uM l =
1
s

∑
v∈S(evM l− 1

n ). Now, evM l− 1
n is the discrepancy vector of the probability



distribution of the random walk starting from v after l steps. Thus, by Jensen’s
inequality, we conclude that

1
s

∑

v∈S

∆l(v) ≥ ‖uM l‖ >
1

2
√

s
(1− 4δ)l.

Hence, there is some v ∈ S for which ∆l(v) > (2
√

s)−1(1− 4δ)l. ut
Lemma 4. Consider sets T ⊆ S ⊆ V such that the cut (S, S̄) has conductance
less than δ. Let |T | = (1−θ)|S|. Assume 0 < θ ≤ 1

8 . Then, for any integer l > 0,

there exists a node v ∈ T such that ∆l(v) > (1−2
√

2θ)
2
√

s
(1− 4δ)l.

Proof. Let uS (resp., uT ) be the uniform distribution over S (resp., T ) minus 1
n .

Let s and t be the sizes of S and T resp. Let uS =
∑

i αif i and uT =
∑

i βif i

be representation of uS and uT in the basis {f1, . . . , fn}, the unit eigenvectors
of M . Note that α1 = β1 = 0 since uS and uT are orthogonal to 1.

Since the conductance of S is less than δ, by applying inequality (1) from
Lemma 3, we have that ∑

i∈H

α2
i >

1
4s

.

We have
‖uS − uT ‖2 =

1
t
− 1

s
=

θ

(1− θ)s
≤ 2θ

s
.

Furthermore,

‖uS − uT ‖2 =
∑

i

(αi − βi)2 ≥
∑

i∈H

(αi − βi)2.

Using the triangle inequality ‖a− b‖ ≥ ‖a‖ − ‖b‖, we get that

∑

i∈H

β2
i ≥




√∑

i∈H

α2
i −

√∑

i∈H

(αi − βi)2




2

>

[
1

2
√

s
−
√

2θ√
s

]2

≥ (1− 2
√

2θ)2

4s
.

Finally, reasoning as in Lemma 3, we get that ‖uT M l‖ > (1−2
√

2θ)
2
√

s
(1− δ)l, and

thus, by Jensen’s inequality, there is a v ∈ T such that ∆l(v) > (1−2
√

2θ)
2
√

s
(1−4δ)l.

ut
This lemma immediately yields the following corollary:

Corollary 4. Consider a set S ⊆ V such that the cut (S, S̄) has conductance
less than δ. For positive θ ≤ 1

8 and any integer l > 0, there exist at least θ|S|
nodes v ∈ S such that ∆l(v) > (1−2

√
2θ)

2
√

s
(1− 4δ)l.

Using the above lemmas, we can now show that G looks almost like an
expander.



Lemma 5. There is a partition of the graph G into two pieces, A and Ā := V \A,
with the following properties:

1. |A| ≤ 2
5εn.

2. Any cut in the induced subgraph on Ā has conductance Ω(Φ2).

Proof. We use a recursive partitioning technique: start out with A = {}. Let
Ā = V \ A. If there is a cut (S, S̄) in Ā with |S| ≤ |Ā|/2 with conductance less
than cΦ2, then we set A := A ∪ S, and continue as long as |A| ≤ n/2. Here, c is
a small constant to be chosen later.

We claim that the final set A has the required properties. If |A| > 2
5εn, then

consider the cut (A, Ā) in G. It has conductance at most cΦ2. Now, Corollary 4
implies (with θ = 1/10) that there are at least 1

10 |A| > 1
25εn nodes in A such

that for all such nodes v, and for b = (1−2
√

1/5)√
2

, we have

∆`(v) >
b√
n

(1− 4cΦ2)` >
√

6σ/n

for a suitable choice of c in terms of µ (say, c = µ/200 suffices).
Thus, for all such nodes v, we have γ`(v) = ∆`(v)2 +1/n > (1+6σ)/n, which

implies that all such nodes are weak, a contradiction since there are only 1
25εn

weak nodes.
Since |A| ≤ 2

5εn < n/2, when the recursive partitioning procedure termi-
nates, any cut in the induced subgraph on Ā has conductance Ω(Φ2). ut

3.3 Getting an expander

Armed with the partitioning algorithm of Lemma 5, we are ready to present
the patch-up algorithm, which changes the graph in εnd edges and raises its
conductance to Ω(Φ2). Note that we do not perform this patch-up algorithm as
part of our tester. It is merely used to show that G is close to an expander. The
trivial patch-up algorithm would just add d random edges to every vertex in A.
This would only add at most εnd edges and make the conductance Ω(Φ2). The
drawback is that the degree bound will not be preserved. We have to be more
careful to ensure that we can find a graph G′ ε-close to G which is an expander
and has a degree bound of d.

Patch-up Algorithm

1. Partition the graph into two pieces A and Ā with the properties given in
Lemma 5.

2. Remove all edges incident on nodes in A.
3. For each node u ∈ A, repeat the following process until the degree of u

becomes d− 1 or d: choose a vertex v ∈ Ā at random. If the current degree
of v is less than d, add the edge {u, v}. Otherwise, if there is an edge {v, w}
such that w ∈ Ā, remove {v, w}, and add the edges {u, v} and {u,w} (call
these newly added edges “paired”). Otherwise, re-sample the vertex v from
Ā, and repeat.



To implement Step 3, we need to ensure that the set of nodes in Ā with
degree less than d or having an edge to another node in Ā is non-empty. In fact,
we can show a stronger fact:

Lemma 6. At any stage in the patch-up algorithm, there are at least 1
4 |Ā| ≥

1
4 (1 − 2ε/5)n nodes in Ā with degree less than d or having an edge to another
node in Ā.

Proof. Let X ⊆ Ā be the set of nodes of degree at most d/2 before starting the
second step, and let Y := Ā \X. Now we have two cases:

1. |X| ≥ 1
2 |Ā|: We add at most 2

5εnd edges, since |A| ≤ 2
5εn. At most half the

nodes in X can have their degree increased to d, since 2
5εnd ≤ 1

2 |X| · d
2 , since

|X| ≥ 1
2 (1 − 2ε/5)n. Here, we assume that ε ≤ 1/4. Thus, at any stage we

have at least 1
4 |Ā| nodes with degree less than d.

2. |Y | ≥ 1
2 |Ā|: we remove at most 1

5εnd edges from the subgraph induced by
Ā. At most half of the nodes in Y can have their (induced) degrees reduced
to 0, 1

5εnd ≤ 1
2 |Y | · d

2 , since |Y | ≥ 1
2 (1 − 2ε/5)n. Again, we assume that

ε ≤ 1/4. Thus, at any stage we have at least 1
4 |Ā| nodes with at least one

edge to some other node in Ā.

Now, we prove that the patch-up algorithm works:

Theorem 2. If there are less than 1
25εn weak vertices, then εnd edges can be

added or removed to make the conductance Ω(Φ2), while ensuring that all degrees
are at most d.

Proof. We run the patch-up algorithm on the given graph. It is easy to see that
at the end of the algorithm, every node has degree bounded by d. Also, the total
number of edges deleted is at most 2

5εnd+ 1
5εnd, and the number of edges added

is at most 2
5εnd. Thus the total number of edges changed is at most εnd.

Now, let (S, S̄) be a cut in the graph with |S| ≤ n/2. Let SA = S ∩ A, and
SĀ = S ∩ Ā. Let m := |S|. We have two cases now:

1. |SĀ| ≥ m/2: In this case, note that in the subgraph of original graph induced
on Ā, the set SĀ had conductance at least cΦ2, and hence the cut (SĀ, Ā\SĀ)
had at least 2cΦ2|SĀ|d ≥ cΦ2md edges crossing it.
For any edge {v, w} that was in the cut (SĀ, Ā \ SĀ) and was removed by
the construction, we added two new edges {u, v} and {u,w} for some u ∈ A.
Now it is easy to check that regardless of whether u ∈ SA or u /∈ SA, one of
the two edges {u, v} and {u, w} crosses the cut (S, S̄). Thus, at least cΦ2md
edges cross the cut (S, S̄), and hence it has conductance at least c

2Φ2.
2. |SĀ| ≤ m/2: In this case, for each node u ∈ SA, we chose at least d/2 random

edges connecting u to nodes in Ā (for now, disregarding one edge in every
set of paired edge from step 3.). By Lemma 6, and since |SĀ| ≤ |SA| ≤ |A| ≤
2εn/5, the probability that for any such edge, the endpoint in Ā was actually
in SĀ is at most

|SĀ|
1
4 |Ā|

≤ 2ε/5
1
4 (1− 2ε/5)

≤ 1/4



assuming ε ≤ 1/8.
Since |SA| ≥ m/2, the total number of edges added to nodes in SA is at
least md/4 (again, disregarding one edge out of every set of paired edges).
The expected number of these edges going into SĀ is at most md/16. By the
Chernoff-Hoeffding bounds, the probability that more than md/8 randomly
chosen edges lie completely in S is less than n−Ω(md) ≤ 1/3nm+1, if we
assume d is at least a large enough constant.
Taking a union bound over all sets of size m (the number of which is at most
nm), and then summing over all m, we get the with probability at least 2/3,
none of these events happen, and thus at least at least md/8 edges cross the
cut (S, S). Therefore, the conductance of this cut is at least 1/16 > Ω(Φ2),
since Φ ≤ 1.

ut
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