Noise Tolerance of Expanders and Sublinear Expander Reconstruction

Satyen Kale Yuval Peres
Microsoft Research
One Microsoft Way
Redmond, WA 98052
{satyen.kale, peres } @microsoft.com

Abstract

We consider the problem of online sublinear expander
reconstruction and its relation to random walks in “noisy”
expanders. Given access to an adjacency list representation
of a bounded-degree graph G, we want to convert this graph
into a bounded-degree expander G' changing G as little as
possible. The graph G’ will be output by a distributed filter:
this is a sublinear time procedure that given a query vertex,
outputs all its neighbors in G', and can do so even in a
distributed manner, ensuring consistency in all the answers.

One of the main tools in our analysis is a result on the be-
havior of random walks in graph that are almost expanders:
graphs that are formed by arbitrarily connecting a small un-
known graph (the noise) to a large expander. We show that
a random walk from almost any vertex in the expander part
will have fast mixing properties, in the general setting of
irreducible finite Markov chains. We also design sublinear
time procedures to distinguish vertices of the expander part
from those in the noise part, and use this procedure in the
reconstruction algorithm.

1. Introduction

Large data sets are ubiquitous today with the advent of
high speed computers and connectivity. Being able to gain-
fully use these data sets is a challenge, especially when
they are used to answer online queries which are generated
rapidly. Even linear time algorithms are too slow in this
context, and therefore sublinear time algorithms become
critical. In many applications, queries to large data sets typ-
ically expect the data set to satisfy some structural property
that makes it useful. For example, users of a data set may
expect that a set of points is in convex position, that a list
of numbers is sorted, or that a large graph is a tree. These
properties are sensitive to noise, and even a small amount
of corruption could destroy the usefulness of the data set.
Suppose we performed binary search on an array that is not

C. Seshadhri
Dept. of Computer Science
Princeton University
35 Olden St, Princeton, NJ 08540
csesha@cs.princeton.edu

completely sorted: even a few values out of place could
make the binary search process completely fail.

Because of various difficulties in gathering data on such
a large scale, or just because of external noise, the data set
may actually fail to satisfy the desired property. The ex-
tensive theory of property testing algorithms (see surveys
[13, 14, 25]) provides means to detect such problems in ex-
isting data sets in sublinear time. However, in applications
it may not suffice to just detect such problems, after all, one
needs to actively process the data to perform useful tasks.
Usually, it is reasonable to minimally modify the data to re-
store the property, so that further processing can take place
without problems. However, since the input is so massive,
one cannot afford to read the whole input and then fix it,
particularly since this may require global changes.

Thus, this may seem like an impossible task, but usually
access to the large input is provided in the form of local
queries: for example, if the input is, say, the web graph,
then typical queries to the input would ask for all the out-
going links from a given webpage. In such cases, we would
like to repair the input as and when we read it in sublinear
time. More precisely, we seek to design a filter algorithm
that sits between users of the input and the input itself. The
filter accepts queries and actively repairs the input while an-
swering the queries. This was the motivation for the defini-
tion of online property reconstruction model in [1] (see also
[27, 10] for more applications).

In this paper, we are concerned with online sublinear re-
construction of expanders. The input is a huge bounded
degree graph represented by adjacency lists. The graph is
supposed to be an expander, i.e. for any subset of vertices
of at most half the size of the graph, the number of outgoing
edges (i.e., to the complement of the subset) is a significant
fraction of the total number of edges incident on the ver-
tices in the set. The queries are in the form of requests for
the adjacency list of a specified vertex. The filter’s job is
to answer such queries in sublinear time, such that the final
picture is that of a graph that really is an expander, while
adding as few edges as possible to make it into an expander.

We show that expander reconstruction is connected to
some intriguing questions about random walks in “noisy”
expanders. Suppose one is given a graph G that consists
of a large expander connected arbitrarily to some small un-
known graph (the noise). The graph G is probably not an
expander, but we would like to show that random walks
on the expander part are not greatly affected by the noise.
Turning this around, we can ask: what portion of the large
expander is affected by this noise? Can we still hope that
from almost all of the expander, we can reach a vast ma-
jority of the expander by short random walks? We prove
the rather strong statement that the noise can affect a part
of the expander that is proportional in size to the noise. We
believe that this result should be useful in other contexts as
well, and we present it in the general setting of arbitrary
irreducible Markov chains rather than for our specific ap-
plication.

For the reconstruction problem, we design a sublinear
time procedure based on random walks that can very accu-
rately distinguish between vertices in a high expansion part
of the graph, and vertices of the noisy part. This procedure
essentially measures the distance between the probability
distribution induced by a random walk on an undirected
graph to the stationary distribution. Previous algorithms
for measuring such distances [8] are not efficient enough
for our situation, and we design new tools for these sce-
narios. Using our general result on the noise-tolerance of
expanders, we show that the number of vertices from which
a random walk mixes poorly is a good measure of the com-
binatorial distance (in terms of edges changed) of a graph
to being an expander, thus establishing a link between these
two different notions of distance.

Our implementation of the filter algorithm allows it to
answer queries in a distributed fashion. This is a very use-
ful property, in settings where we imagine the filter to be a
query processing engine for a giant database, and there are
many independent users who all want to have access to the
database. This model was first discussed in [27]. The ability
to answer queries in a distributed manner is certainly more
difficult than sequential answering, when the filter may be
able to store a limited amount of history.

1.1. Online Sublinear Reconstruction of Ex-
panders

The input is a large graph G = (V, E), with n vertices.
We assume that all the vertices have degrees bounded by
some specified constant d, which we assume to be suffi-
ciently large (say at least 10). The graph G is represented
by adjacency lists: for every vertex v, there is list of ver-
tices (of size at most d) adjacent to v. Given a subset of
vertices S C V of size at most n/2, let S = V \ S, and
let £(S, S) denote the set of edges crossing the cut (.5, S).

The expansion of the cut is defined to be | E(S, S)|/|S|. The
expansion of the graph is the minimum expansion over all
cuts in the graph. An expander is a generic term for a graph
with high expansion.

We consider a related parameter, the conductance of a
cut, which is defined to be just the expansion of the cut di-
vided by 2d. The conductance of the graph is its expansion
divided by 2d. We are given a parameter ¢, and the input
graph is supposed to (but may not) have the property that its
conductance is at least ¢.

We now explain the problem of sublinear reconstruction
of expanders, in the framework of the distributed recon-
struction model of [27]. Given an input graph G, we wish
to construct a graph G’ that has high expansion, and differs
from G as little as possible. Moreover, we want to construct
G’ through a procedure called a filter which provides the in-
terface to G’ by outputting a list of the (at most) d neighbors
of a given input vertex v in G’. Each such query needs to be
processed in sublinear time in the size of the graph. Note
that there is no preprocessing involved. A conductance pa-
rameter ¢ is specified in advance, and we wish to make the
conductance of G’ as close to ¢ as we can, while modifying
G as little as possible.

In addition, we aim for a distributed implementation of
the filter, which can handle any number of parallel queries
and yet maintain consistency of answers across queries.
Each query is handled by a separate invocation of the fil-
ter which has access to a shared random seed s of sublinear
size. Conditioned on the seed, the filter is a deterministic
procedure, i.e. it employs no other source of randomness.
Our implementation should guarantee that with high proba-
bility over the choice of the random seed s, the final graph
G’ (obtained after all vertices have been queried) has de-
grees bounded by d, conductance at least ¢’ which is as
close to ¢ as possible, and changes G in at most a - OPT
edges where OPT is the optimal number of edges needed to
be changed to make the conductance at least ¢, and « is the
approximation factor.

We now state our main theorem regarding the properties
of our filter:

Theorem 1 There is a deterministic procedure RECON-
STRUCT that takes as input a vertex v and a random seed
s of length' O(/n/¢?), and outputs the adjacency list of v
in G'. All the following properties simultaneously hold with
probability at least 1 — 1/n? over the choice of the random
seed s:

1. Each adjacency list is output in O(\/n/$?) time,

2. All outputs are consistent: the vertex u is output as a
neighbor of v iff v is output as a neighbor of u,

'In this paper, we use the O notation to suppress dependence on
poly log(n) factors.

3. The final graph G’ has conductance at least ¢/ =
Q(¢?/logn) and degree bound d,

4. The number of edges changed is at most O(éOPT),
where OPT is the optimal number of edges needed to
be changed to make the conductance at least ¢.

Note that the distributed filter can be used as a property
tester for expansion, so by the lower bound for testing ex-
pansion by Goldreich and Ron [18], the running time of our
filter is optimal up to poly log(n) factors.

1.2. Comparison to Property Testing

In property testing [15, 26], we wish to accept inputs
that satisfy some given property, and reject those that are
sufficiently “far” from having that property. A vast array of
combinatorial and graph properties [3, 4, 11, 15] are indeed
testable without even reading the entire input. The problem
of online reconstruction is closely connected to property
testing: indeed, a distributed filter can be used to estimate
the distance to a given problem in sublinear time, thereby,
giving a property testing (and even a tolerant tester [24]).

The input model of adjacency lists for sparse graphs
was introduced by Goldreich and Ron [18], where they de-
signed testers for a large set of problems. More general re-
sults about the testability of large classes of properties were
obtained by Czumaj and Sohler [11] and by Benjamini,
Schramm, and Shapira [9]. The technique of using ran-
dom walks for testing was first introduced by Goldreich and
Ron [16] for testing bipartiteness.

Goldreich and Ron [17] formally posed the problem of
expansion testing (by a result in [18], there is a lower bound
of Q(y/n) queries to the input graph). Given a d-degree
bounded input graph G and a distance parameter ¢, we want
to distinguish between the case that G is an expander, and
that at least end edges need to be changed in G to make it
an expander?. The first progress towards this was made by
Czumaj and Sohler [12]. Further work on testing expansion
improving certain parameters was done in [19, 23].

The reconstruction problem is a much harder problem
than property testing for expansion for two reasons: first,
the property testing problem is a decision problem, whereas
reconstruction algorithm needs to actively take local action
in each query to fix the input graph, and patch up sparse
cuts. Second, in the notation of Theorem 1, property testing
algorithms only need to distinguish between graphs which
have OPT = 0 and OPT > end, whereas reconstruc-
tion algorithms, via their guarantee on the number of edges
changed, actually approximate OPT, for all values of OPT
(although the difficulty of this task is mitigated somewhat
since the guarantee is only required to hold after all the ver-
tices have been queried).

2This is not the complete formulation, but it suffices for this discussion.

Thus, the known techniques in property testing algo-
rithms are inadequate for reconstruction. Such approaches
show that in a graph G that is far from being an expander,
there exist many “bad” vertices starting from which random
walks in G' do not mix rapidly. One may expect that adding
d edges at random to all such bad vertices will suffice to
make it an expander, and indeed it does, but it may be an
overkill: there are graphs G where all vertices are bad, yet
G can be made an expander by adding very few edges.

We therefore need to devise completely new techniques
for reconstruction. The main approach to reconstruction is
to identify weak and strong vertices. Intuitively, weak ver-
tices are those that lie on the smaller side of bad cuts, and
therefore need edges to be added from them, whereas strong
vertices are those that are part of a large expanding compo-
nent (if one exists). The reconstruction procedure should be
careful to only add edges to the weak vertices.

The property testing approach of distinguishing between
weak and strong vertices by thresholding the distance from
mixing for a short random walk fails: one can easily con-
struct counter-examples for any threshold. Furthermore, the
strongest property testing results are obtained using the Lo-
distance, but this is too sensitive to noise, harming the mix-
ing properties of many strong vertices. Thus, in this paper,
we develop completely new techniques based on the £;-
distance, and prove noise-tolerance properties of Markov
chains under this norm. These properties are crucial in our
reconstruction algorithm.

2. Noise-tolerance of Markov Chains

First, we discuss our theorem about the noise-tolerance
of Markov chains. Later, we apply this to our setting of
expansion reconstruction. Let M be a finite Markov chain
with state set V' and transition probabilities p,,,, for u,v €
V. The k-step transition probabilities will be denoted as
pk. . The vector p* represents the probability distribution
on V for a k-step random walk starting from u (for k = 0,
pY, = 1landp? = 0forv # u). For simplicity, we assume
that M is irreducible, and that for any u € V, py, > 1/2
(so that the chain is aperiodic). In this case, there is a unique
stationary distribution 7 for the Markov chain. For a subset
of states S C V, define n(S) = .4 mu. Note that the
chain need not be reversible.

The conductance of the Markov chain is defined to be the
largest number ¢ such that for any subset of states S C V,

u€S,weV\S

It is a well-known fact (see, for example [22, 20, 28]) that
if the Markov chain has high conductance, then from any
starting state, the chain converges to the stationary distribu-

tion exponentially fast at a rate determined by the conduc-
tance.

Suppose we are given a Markov chain that almost has
high conductance, in the following sense. There is a “large”
subset of states V' C V such that the chain restricted to
the subset V'’ has high conductance, and nothing can be
said about the remaining “small” part of the state space,
B = V \ V’ (the “noise”). Then, we would like to show
that except for a set of states B’ of stationary measure com-
parable to that of B, from all other starting states the chain
will have some fast mixing properties (i.e. the noise has
limited influence).

This turns out to be hard to prove because it can be true
for completely different reasons. Suppose that the noise B
is almost disconnected from V. Then, a random walk start-
ing from V' will almost never leave V' and since V"’ has
high conductance, will definitely mix rapidly inside V’. On
the other hand, suppose that the whole chain has high con-
ductance (not just restricted to V). In this case, although
walks from inside V'’ will encounter B, all walks will still
mix rapidly. We need a proof that can interpolate between
these scenarios. A first approach to proving this would be
to estimate the probability that a walk from V' never hits B.
But such a bound would be too weak: there are many states
(compared to 7(B)) which are sufficiently “close” to B that
a random walk from them will almost certainly hit B.

We now proceed to formalize the setting. Given a subset
of states V' C V, define the V’-conductance of the chain to
be the largest number ¢ such that for any set S C V’,

Z TuPuv > d) : IHiI’l{W(S), ﬂ—(vl \ S)}

ueS,weV’\S

We also need the notion of a uniform averaging walk in
the Markov chain of ¢ steps: in such a walk, we choose
a number k € {0,1,2,...,¢ — 1} uniformly at random,
and stop the chain after k steps. Thus, the distribution of
the final state of the uniform averaging walk starting from
uis pl, = Zi;é pk,. The total variation distance be-
tween two distributions £ and v on the states is defined to
be [|€ — v = maxs [£(S) —(S)] = L[1€ [} 1. where
S is an arbitrary subset of states, and £(S) and v(S) are,
respectively, the measures of S under & and 1 respectively.

Theorem 2 Let the Markov chain M have V'-conductance
¢. Let 1o = min{m, /m(V') : w € V'}. Then, there is a set
B’ such that 7(B’) < 27t(B) with the property that starting
from any state s € V' \ B, if the uniform averaging Markov
chain of £ > 8log(1/emg)/(e¢?) steps is run, then the final
probability distribution p’, satisfies ||pt —7||rv < e +7(B).

We prove this theorem as follows. We consider a closely
related Markov chain that is restricted to V/. We retain all
the original transitions in M between any pair of vertices

u,v € V' with the same probabilities. We assign all such
transitions a cost of 1. The meaning of this cost will be
explained later.

For any pair of vertices u,v € V', and for every integer
j > 2, define ¢/, to be the total probability of all length
7 walks from u to v all of whose states, except for the end
points v and v, are in B. Then we add a new transition
ed , from u to v with cost j and probability ¢/, . Since M
is irreducible, any walk in M that enters B has to eventu-
ally leave it, and hence the new transitions define a Markov
chain on V’. Call this new Markov chain M’. Since M is
irreducible, so is M’. The chain M’ is called an induced
Markov chain by Aldous and Fill [2].

Now, for any walk in M’, define the cost of the walk to
be the total cost of all transitions in the walk. The cost of
a walk in M’ is naturally mapped to the length of a corre-
sponding walk taken in M (where taking one of the new
transitions is to be interpreted as taking all the correspond-
ing walks of length equal to the prescribed cost which are
entirely in B, except for the end points).

This correspondence between walks in M and M’ also
implies that the stationary distribution in M’ is one that as-
signs probability 7/, = m, /7 (V") to state u. This can be
seen by considering an arbitrary state z € V'’ and using the
fact that the stationary probability of any state u € V' is
proportional to the expected number of visits to u before
returning to z, and then using the correspondence between
the walks to argue that the expectation is the same in both
M and M. For convenience, for u € B, we define 7], = 0.

Lemma 1 For any integer t > 0, there exists a set BCV'

such that m(B) < w(B), with the property that for all v €
V'\ B,

[E[cost of ¢ step walk in M’ from v] < 2t.

PROOF: Fix any starting state s € V'. Let X* be the k-th
state on a t step walk in M’ from s. For any u € V’, let
P’ lfu be the probability of reaching u from s on step £ of a
random walk in M.

For any u € V', we have E[costof step k + 1 | X* =
u] = E[cost of one step from u|, by the Markov property.
So define

¢y = E|cost of one step from u]
vev’ §>2

We have

E|[cost of ¢ step walk from s]

= E[cost of step &k + 1]

= Z E[cost of step & + 1 | Xk = ul 'P/};u

=+ Y (1)l

Now, we define

t—1
B = {SEV’: ZZ(cu—l)-p’lsu > t}. (1)

k=0ucV’

With this definition, it is clear that for any starting state s €
V' \ B, the expected cost of a ¢ step walk from s is at most
2t, as required by the statement of the lemma. We proceed

to bound 7(B) as follows:

t-m(B) < Y m- lz Z(cu—l)-p’fu]

seV’ k=0uecV’
t—1
k
= DD (=1) m
k=0ueV’ seV/
t—1
- Y e 1)
k=0uecV’
= t~ Z Wu(cu—l)
ucV’

where the equality on the second line follows because 7’ =
W’Plk, where P’ is the transition matrix of M’, which im-
plies that) ., mip’ " = !, and because 7/, o 7, for
uweV.

We now need to bound } .y, mu(cy, — 1). Note that ¢,
is exactly the expected time to return to the set V"’ starting
from w in the original Markov chain M. Since M is irre-
ducible, by Kac’s lemma (see [2]), we have ZueV’ TuCu =
1, and hence) . Tu(cy — 1) = 1 —7(V’) = 7(B).
Thus, we have ¢ - 7(B) < t - w(B), which implies that
7(B) < n(B). O

Now, we would like to prove that the set B’ = BU B,
where B is defined in Lemma 1 works for Theorem 2, when
t is chosen to be the mixing time of M’, which can be bound
in terms of the conductance of M’. The idea is that even
without the newly added transitions, the Markov chain V'
has high conductance. Thus, if a short walk in V'’ mixes,
then by Lemma 1, a corresponding short walk in the original
chain should mix as well.

PROOF: [Theorem 2]

We use the notion of stopping rules for Markov chains [21].
A stopping rule is a rule that observes the walk and tells us
whether to stop or not, depending on the walk so far (but
independently of the continuation of the walk). This deci-
sion may be reached using coin flips, so the stopping rule
has to only specify for each finite walk w, the probability of
continuing the walk, so that with probability 1, the walk is
stopped in a finite number of steps. The expected time for
a stopping rule to terminate the walk yields bounds on the
mixing time of the chain.

Let B’ = B U B, where the set B is as defined in equa-
tion (1) in Lemma 1. Let s € V' \ B’ = V' \ B. We con-
sider a random walk in the original Markov chain M start-
ing from s with the following probabilistic stopping rule I':
stop the walk as soon as it has taken ¢ steps in the induced
walk in M’. Note that this stopping rule always stops the
walk on some state in V’. Denote by E4[I'] the expected
number of steps the walk takes starting from s before being
terminated by I'.

Now, because the Markov chain M has V’-conductance
at least ¢, the Markov chain M’ has conductance at least ¢,
and hence by the results of [22, 20], at = 2[log(1/emg)]/¢?
step walk starting from s mixes on V’, i.e. ||p’} — 7/||lry <
/2, where p’ ’; is the probability vector for a ¢ step random
walk starting at s. Furthermore, we have |7’ — 7|y =
7(B), and hence by the triangle inequality, ||p’" — ||ty <
€/2+m(B). Now, by Lemma 1, we have 4[] < 2¢. Thus,
forall s € V' \ B, the stopping rule T" stops the walk in a
distribution that is within total variation distance £ /2+7(B)
of the stationary distribution within an expected 2t steps.

Lovdsz and Winkler [21] define H(s, d5) to be the mini-
mal expected time for a stopping rule to stop a chain started
from s in a distribution that is within variation distance §
of the stationary distribution, and thus we have shown that
H(s,dzj24x(B)) < 2t. Now, Theorem 4.22 in [21] implies
that for the uniform averaging chain of ¢ steps in M started
from s, if ﬁﬁ is the final distribution, then

1
5/2 + 7T<B) + ZH(Sv ds/2+7r(B))

IN

Ips = vy

< e+ n(B),

since ¢ > 4t /e, which completes the proof. O

3. The Reconstruction Algorithm

We give an overview of the reconstruction algorithm. In
the first step, the algorithm tries to identify vertices that are
part of a low conductance cut (a “bad” cut), and in the sec-
ond step, it attempts to boost the conductance of the cut by
adding edges to the identified vertices. We use a random
walk based procedure to separate vertices on the smaller

side of a bad cut from the larger. The details of this separa-
tion procedure are given in Section 3.1.

One way to fix the bad cuts is to add random edges to
the identified vertices. This works, but doesn’t allow for
distributed query processing which requires the random-
ness to be fixed in advance. Instead, we use an explicit
expander, and construct a hybrid of the original graph and
the expander. The hybridization is locally done to allows
distributed query processing. Details of the hybridization
procedure are given in Section 3.2.

3.1. Separating vertices

We define a Markov chain on the graph, and study ran-
dom walks in this Markov chain. The states of the chain
are the vertices of the graph, and the edges represent tran-
sitions, such that from each vertex u, any outgoing edge
(u,v) is taken with probability p,, = 1/2d. With the re-
maining probability, the walk stays at the current vertex.
Note that this is an irreducible (assuming the graph is con-
nected), aperiodic, and time-reversible chain, and the sta-
tionary distribution is uniform on all the vertices.

Let £ = clog(n)/$?, where c is a sufficiently large
enough constant. We will consider the uniform averaging
walk of length ¢, in two forms based on related probabilistic
stopping rules:

1. Pick an integer t € {0,1,2,...,¢ — 1} uniformly at
random, and stop the walk after ¢ steps. This is the
uniform averaging walk of length ¢. Let ¢, be the
probability of reaching v from u after such a random
walk (i.e. ¢y, = P, in the notation of Section 2).

2. Pick two integers t1,t2 € {0,1,2,...,¢ — 1} uni-
formly at random, and stop the walk after ¢; + 5 steps.
Let @, be the probability of reaching v from v after
such a random walk.

Let g, be the probability vector of g, s. For a subset of
vertices S, let ¢, (S) := >, c g Quo (similarly we define Q.
and Q,,(.9)). It is easy to see that for any two vertices u and
v, we have qu = Zw Quwquwv = Zw Quwqvws because
Guwv = Quw, as all edges have the same probability of 1/2d.
For ease of notation, we will refer to the above walks as ¢-
random walks and ()-random walks. In our procedures and
definitions, we will use some constants: c is a sufficiently
large integer and «, 3,7, > 0 are sufficiently small (val-
ues a = 1/1000, 8 = 1/10,~, 8 = 1/100 work?).

We now define weak and strong vertices. Intuitively,
strong vertices are those that can reach a vast majority of
vertices with probability €(1/n) through a short random
walk. Formally, we will look at the mixing properties of

3We have not optimized these constants.

random walks in the £; norm. Note that there can be ver-
tices that are neither strong nor weak. In the following def-
inition, 1 is the all 1’s vector.

Definition 1 (Strong and Weak vertices)
1. Avertexu €V is called strong if

g = T/nllrv < a
2. Avertexu € V is called weak if
1Qu = T/nllrv > 1/4.

Intuitively, strong vertices are those that reach a vast ma-
jority of vertices (through short g-walks) with probability
Q(1/n). The basic idea is to perform many g-walks from
u (and v) and compute the number of collisions between
these walks (at the endpoints): this is a twist on the idea of
Goldreich and Ron [17] for using random walks to estimate
the mixing of a random walk. A birthday paradox like ar-
gument suggests that O(y/n) walks should be sufficient to
estimate probabilities of €2(1/n). Unfortunately, assuming
nothing about the vectors ¢, and ¢,,, we cannot get a reason-
able bound on the variance of our randomized estimate®.
For this reason, we define the reduced collision probabil-
ity, which disregards collisions that occur due to vertices
reached with extraordinarily high probability. This quan-
tity attempts to approximate (Q,, and can be estimated in
sublinear time. For the purpose of separating weak vertices
from strong ones, it suffices to estimate these probabilities.

Definition 2 (Reduced Collision Probability) For a given
pair of vertices u,v, define the set S, = {w : Quu <

1/+/n} and similarly the set S,. The reduced collision
probability of vertices u, v (denoted by r,,,) is:

Tuv = Z GuwQvw

weS,NSy

We now describe a procedure SEPARATE that distin-
guishes weak vertices from strong ones. It uses a subroutine
ESTIMATE-RCP, that outputs accurate estimates 7, of the
actual r,,, values.

SEPARATE (Input: Vertex u € V)

1. Choose a random set R of clogn /v vertices.

2. For every v € R, run ESTIMATE-RCP(u,v), clogn
times. If for a majority of these runs, ESTIMATE-RCP
does not abort and outputs 7, > (1 — 0)(1 —4)/n,
then call v accessible.

3. If more than a (1 — 2v)-fraction of vertices in R are
accessible, then accept u. Otherwise reject w.

4 As an extreme example: suppose for some w, quw = 1—1/n—1/n2,
and gy, = 1/n? for z # w; whereas all g,, = 1/n. Although Qu,» =
Q(1/n), it is very unlikely that a sublinear time procedure can detect a
collision between g-random walks from w and v.

Lemma2 The procedure SEPARATE runs in
O(y/nllog? n) time, and with probability at least 1 — n~3
has the following behavior:

1. Assume there are at least (1 — ~)n strong vertices, for
some constant . If w is strong, then the algorithm
accepts u.

2. If u is weak, then the algorithm rejects u.

PROOF SKETCH: For any two strong vertices u,v, we
can show that r, > (1 — 3)/n, for 3 > 3y/a. Thus, if
there are at least (1 — v)n strong vertices, then a majority
of nodes in the sample are strong, and hence the first part
follows. As for the second part, if u is a weak vertex, then
for most vertices v, r,,, < 1/n, and thus w is rejected with
high probability. O

We now describe the ESTIMATE-RCP procedure. It uses
a simple procedure FIND-SET (described in the full version
of the paper) which, for any given u, outputs an approxima-
tion to the set S,. The following Lemma 3 is not exactly
true, but it conveys the correct meaning.

ESTIMATE-RCP (Input: Vertices u,v € V')

1. Let S, :=FIND-SET(u), and S, :=FIND-SET(v).

2. Keep performing g-random walks from « until m =
v/n/6% such walks end at vertices in S, (call this set
of walks W,,). If more than 20m walks are performed,
then ABORT. Repeat for walks starting from v as well
to obtain the set of m walks W,,.

3. Let X be the number of pairwise collisions between
walks in W,, and W, (if a walk from W, and a walk
from W, end at the same vertex, then this counts as a
pairwise collision). Output X /m?.

Lemma3 Let uw and v be two vertices. The run-
ning time of ESTIMATE-RCP is O(y/nllogn). If both
qu(Su), qu(Sy) > 1/2, then ESTIMATE-RCP aborts with
probability less than e~ OWmn), If ESTIMATE-RCP does not
abort, then it outputs an estimate T, such that

Pr[|7yy — ruy| > d max{r,,,1/2n}] < 1/10.

PROOF SKETCH: Assume that S’u, Sv are exactly S, .5,
and that ESTIMATE-RCP does not abort. The probability
of a collision between walks started from « and v at a ver-
tex in .S, N.S,, is exactly r,,. Since the r, values are based
on collisions at only those vertices that are not reached with
extraordinarily high probability, we can show that the vari-
ance of our estimate is sufficiently low, and then the high
probability bound follows by an application of Chebyshev’s
inequality. O

3.2. Hybridizing the graph with an ex-
pander

Now that we have a separating procedure, we can de-
scribe the actual reconstruction procedure RECONSTRUCT
that hybridizes an expander with our original graph. Given
a query vertex v, the procedure will output at most d ver-
tices which will be the neighbors of v in the reconstructed
graph. We will refer to the final reconstructed graph as G’,
and for cuts (S, S) in G’, we use the notation E’(S, S) to
refer to the set of edges crossing the cut.

Since we are describing a distributed filter, we assume
we have access to a sublinear sized random seed s of size
O(4/n) which is fixed for all queries. Since the total number
of calls to SEPARATE is at most O(n) (for each call to the
RECONSTRUCT, we will make O(1) calls to SEPARATE),
by taking a union bound over all the error probabilities, we
can ensure that the guarantees of Lemma 2 hold with prob-
ability at least 1 — 1/n2. Since the seed is fixed, we can un-
ambiguously refer to vertices as accepted or rejected, based
on SEPARATE.

For constructing G’, we use an explicit bounded degree
edge expander G* with n vertices. The explicit construc-
tion allows us to find all neighbors of a vertex v € G* in
poly(log n) time. The precise expansion property of G* we
need is the following:

Property 1 The expander G* has degree bound d/2. For
any set of vertices S in G* with |S| < n/2, we have
|E*(S,S)| > n|S|d, where n is a constant, and E*(S, S) is
the set of edges crossing the cut (S, S).

Naturally, there is a one-to-one correspondence between the
vertices of G and G*. Abusing notation, given a vertex v in
G, we will refer to the corresponding vertex in G* also as v.
To prevent confusion about edges, we will call edges G, G*,
or G'-edges depending on the graph in consideration.

For the sake of intuition, we can think of the accepted
vertices as strong, and the rejected as weak. The recon-
structed graph G’ will be a careful combination of G and
G*. Starting with G, here is an informal description of how
G’ is built. For any rejected vertex v, we remove all G-
edges incident to v and add all G*-edges incident to v to get
the G*-edges. This is to ensure that any subset of rejected
vertices will have large conductance. For accepted vertices,
we would like to just keep the same G-edges.

This construction could potentially make some (ac-
cepted) vertices have a degree larger than d. Therefore, we
have to remove some G-edges incident to accepted vertices
to maintain the degree bound. These edges are removed
based on a simple local rule. Note that this choice cannot
be arbitrary, since we want a distributed filter (for example,
if the G-edge (u, v) is removed on querying v, then it must
also be removed on querying u). Unfortunately, this might

affect the conductance of subsets of accepted vertices. We
ensure that every time we remove such an edge, we replace
it by a very short path (again decided by local considera-
tions) between the endpoints without affecting the degree
bound. This gives us G’ with the desired properties. Be-
cause we want every query to be handled in sublinear time,
we give a procedure that determines the neighbors of a ver-
tex in G’ by running SEPARATE on a constant number of
vertices.

Lemma 4 The procedure RECONSTRUCT has the follow-
ing properties:

(a) It runs in O(y/ntd®log®(n)) time and needs a random
seed of O(+/nld?log?(n)log(d)) bits.

(b) Its outputs are consistent over all queries (i.e. vertex v
is output as a neighbor of u (in G') iff u is output as a
neighbor of v).

(c) The final graph G’ has degree bound d.

(d) Any cut in G’ has at least half the conductance of the
same cut in G.

(e) Any weak vertex has all its G*-neighbors adjacent in
G

We assume that there is some global ordering of the ver-
tices (say, according to the value of their indices). Thus,
given any vertex v, there is an ordered list of the neighbors
of v, with possibly some “null” entries at the end (because
v might have degree less than d). When we refer to the i
vertex in some list of vertices, we mean the i™ vertex in the
list in the global ordering.

As mentioned before, if any vertex w is rejected by SEP-
ARATE, we remove all the G-edges incident on it and re-
place them by G*-edges. To avoid increasing the degree
of accepted vertices, we need to remove some G-edges be-
tween accepted vertices as well. We now describe a pro-
cedure that given an edge e = (u,v) of G, where u and v
are both accepted by SEPARATE, outputs whether the edge
needs to be removed, and if so, what edges are added.

Using the procedure REMOVE, we can describe the
main reconstruction procedure. which outputs all the G’-
neighbors of an input vertex v.

REMOVE (Input: Edge (u,v) € G)

1. Find the G*-neighbors of u and v and consider all the
rejected vertices (according to SEPARATE).

2. Suppose v is the i" neighbor of u, and u is the j"
neighbor of v. Let s be i'" rejected G*-neighbor of u,
and let ¢ be the j™ rejected G*-neighbor of v. Note
that one or both of s and ¢ could be null.

3. If both s and ¢ are null, then (u,v) is not removed.
If ¢ is null, then the edges (s,u) and (s,v) replace
(u,v). If s is null, then the edges (¢,) and (¢, v) re-
place (u,v). If neither s nor ¢ is null, then the edges
(u,), (s,t), (t,v) replace (u,v). The edge (s,t) is
added parallel to any existing (s, t) edges. Finally, out-
put the new neighbors to u and v.

RECONSTRUCT (Input: Vertex v € V)

1. If v is accepted by SEPARATE:

(a) For all the rejected G-neighbors u of v, remove
the edge (u,v).

(b) For all the accepted G-neighbors « of v, call RE-
MOVE on the edge (u,v).

(c) For all the rejected G*-neighbors u of v, add the
edge (u,v), if not added previously.

2. If v is rejected by SEPARATE:

(a) Remove all the G-edges incident on v.

(b) For all G*-neighbors u of v, add the edge (u,v).
If w is accepted by SEPARATE, then let v be the
i™ rejected G*-neighbor of u. Let w be the i
G-neighbor of u. If w is not null, and is accepted
by SEPARATE, call REMOVE on (u, w).

3. Output the final neighbors of v.

PROOF: [Lemma 4]

The running time bound (item (a)) follows from Lemma 2
because we run SEPARATE on at most O(d?) nodes. Item
(e) follows directly from the specification of RECON-
STRUCT.

We now prove item (c). If v is accepted by SEPARATE,
then for every new edge (u, v) added to v for a G*-neighbor
u of v that is rejected by SEPARATE, either we have an space
for an extra edge (because w is null in step 2(b)), or we call
REMOVE on (v, w). The call to REMOVE will remove edge
(v, w) and the only edge incident to v that it will insert is
(u, v) (that was added anyway). Thus, the degree v remains
bounded by d. If v is rejected by SEPARATE, then for every
G*-neighbor u of v, we add at most 2 edges to v (see step
3. of REMOVE). Thus, the G’-degree of v is at most d.

As for item (d): for some cut, let (u,v) be a cut edge. If
edge (u,v) is removed by REMOVE, it is replaced by a path
from u to v in G’. Furthermore, for two different edges
incident to u, these paths are edge-disjoint. In the worst
case, the path from u to v in G’ might use an edge that
is already present in G. Nonetheless, the number of edges
incident to u crossing the cut in G’ will be at least half of
the number in G.

Finally, we prove item (b). This is a matter of verifying
the details. Suppose w is an accepted vertex and let v be
output as a G’-neighbor of u. The neighbor v came about
either because it is a rejected G*-neighbor of v or because
of a call to REMOVE on a G-edge (u, w) for some accepted
node w. In the former case, when RECONSTRUCT is called
on v, we will add the edge (u,v) in step 2(b), and thus u

is output as a neighbor of v. In the latter case, either v is
accepted or rejected. If v is accepted, then w = v and the
edge (u,v) is a G-edge that is untouched by REMOVE, and
thus « is output as neighbor of v when RECONSTRUCT is
called on v. Otherwise, if v is a rejected node, then when
RECONSTRUCT is called on v, in step 2(b) REMOVE will be
called on (u, w), which outputs u as a G'-neighbor of v.

Similar arguments show consistency of the output in case
u is a rejected vertex as well. O

4. Bounds on Number of Edges Changed and
Conductance

We now bound the number of edges changed by RE-
CONSTRUCT in terms of the optimal number of edges to
be changed to make the conductance at least ¢. Theorem 3
gives such a bound and thus establishes a link between two
notions of measuring the “distance” to having a large con-
ductance: number of edges that needed to be changed, and
the number of vertices from which the random walk mixes
poorly (i.e. the weak vertices).

Theorem 3 RECONSTRUCT achieves an approximation
ratio of O(1/¢) to the optimal number of edges to be
changed to make the conductance of the graph at least ¢.

This follows from the following lemma that shows that there
is a large cut of low conductance:

Lemma 5 Let S be the set of strong vertices. Then there is
a cut (B, V\B) such that min{|B|, |V\B|} > Q(n — |S|),
with conductance less than ¢ /2.

PROOF SKETCH: We keep recursively partitioning the
graph G, finding cuts in the remaining induced graph of
conductance less than ¢/2, and aggregating these cuts. To
be more precise: start out with B = {}. Let B =V \ B. If
there is a cut (7, T) in B with |T| < | B|/2 having conduc-
tance less than ¢ /2, then we set B := B UT, and continue,
as long as |B| < n/2. It is easy to check that the final cut
(B, B) also has conductance less than ¢ /2.

If |B| > 9n, then note that | B| < (3 + 2)n, and we are
done since min{|B|, |V \ B|} > Q(n) > Q(n — |5]).
Otherwise, |B| < $n and the subgraph induced on B
has conductance at least ¢/2. The graph G is basically a
noisy expander. We apply Theorem 2 to G, to conclude that
there is a set B’, |B’| < 2| B, such that a g-random walk
starting from any vertex s € V' \ B’ gets to within total
variation distance « of the uniform distribution, or, in other
words, V' '\ B’ C S. Thus,

min{|B[, [V\ B[} = |B] > Q(n —|[S]).

Now we can prove Theorem 3:
PROOF: [Theorem 3]
Lemma 5 immediately implies that the optimal reconstruc-
tion of the graph must add at least Q(¢d(n — |S])) edges to
patch up the cut (B, V \ B). Whenever the reconstruction
algorithm adds an edge, then one of the endpoints is a re-
jected vertex. The total number of removed edges is at most
the number of added edges. Therefore, we can bound the
total change (up to constant factors) by d times the number
of rejected vertices. Suppose the number of strong vertices
is less than (1 — «)n. The graph G is trivially changed by
at most O(nd) = O(d(n — |S|)) edges. If the number of
strong vertices is more than (1 — 7)n, then by Lemma 2
all strong vertices are accepted. Our reconstruction algo-
rithm adds at most O(d(n — |S])) edges, which means that
we have an approximation ratio of O(1/¢) to the optimal
number of edges to be changed. O

Now we give bounds on the conductance of G'.

Theorem 4 The reconstructed graph G’ has conductance
at least 2(¢?/ logn).

PROOF SKETCH: Let S be a set of nodes with |.S| < n/2.
If it has at least (1 — 1/2)|S| weak nodes, then all the G*-
edges incident on these weak nodes are present in G'. By
property 1 of G*, even after accounting for the edges of G*
incident on the weak nodes which end up inside S itself, at
least 17d| S| /4 such edges cross the cut (S, S), thus making
its conductance 2(1).

Otherwise, if S has less than (1 — 1/2)|S| weak nodes,
then the conductance must already be 7/16¢ in G (and
hence, by Lemma 4(d), the cut has conductance at least
1/32¢ in G’): otherwise, using an argument similar to the
one in Lemma 4.7 in [12], with probability at least 3/4,
from at least (1 — 7/2)|S] starting vertices in S, the Q-
random walk, which has length at most 2/, never even exits
the set S. This implies that all such starting vertices are
weak, a contradiction. O

5. Further Directions of Research

One of the main direction of future research is improve-
ment of the conductance bound of G’ to Q(¢?) (instead
of Q(¢?/logn)). For this, we need to have definitions of
weak/strong that distinguish vertices on the basis of very
small probability differences (a total variation distance of
the order of 1/n°). These differences can be algorithmically
tested, but to ensure that not too many edges are added to
get G', we would need much stronger results about walks in
noisy expanders.

It seems highly likely that the algorithmic procedures
we use here could be used for efficient graph partitioning
algorithms [5, 6, 7]. The partitions would be decided by
performing random walks from vertices, and might lead to

easier proofs of earlier results. We may also be able to gen-
erate sublinear routines which can implicitly represent such
a partition: answering queries such as whether two vertices
are in the same graph of the partition or not. Improved con-
ductance bounds for reconstruction may lead to better graph
partitioning algorithms.

6. Acknowledgements

The authors would like to thank Reid Andersen, Itai Ben-
jamini, Bernard Chazelle, Fan Chung, Laszl6 Lovasz, Eyal
Lubetzky, Elchanan Mossel, Dana Randall and Shang-Hua
Teng for helpful discussions.

References

[1] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Property
preserving data reconstruction. Proc. of 15th ISAAC, pages
16-27, 2004.

[2] D.J. Aldous and J. Fill. Time-reversible Markov chains and
random walks on graphs. (book in preparation).

[3] N. Alon, E. Fischer, I. Newman, and A. Shapira. A com-
binatorial characterization of the testable graph properties :
it’s all about regularity. Proc. 38th STOC, pages 251-260,
2006.

[4] N. Alon and A. Shapira. A charaterization of the (natural)
graph properties testable with one-sided error. Proc. 46th
FOCS, pages 429-438, 2005.

[5] R. Andersen. A local algorithm for finding dense subgraphs.
Proc. of 19th SODA, pages 1003-1009, 2008.

[6] R. Andersen, F. R. K. Chung, and K. Lang. Local graph
partitioning using pagerank vectors. Proc. of 47th FOCS,
pages 475-486, 2006.

[7]1 R. Andersen and K. Lang. An algorithm for improving graph
partitions. Proc. of 19th SODA, pages 651-660, 2008.

[8] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and
P. White. Testing that distributions are close. Proc. of 41st
FOCS, pages 259-269, 2000.

[9] I. Benjamini, O. Schramm, and A. Shapira. Every
minor-closed property of sparse graphs is testable. arxiv,
arXiv:0801.2797v2, 2008.

[10] B. Chazelle and C. Seshadhri. Online geometric reconstruc-
tion. Proc. of 22nd SOCG, pages 386—394, 2006.

[11] A.Czumaj and C. Sohler. On testable properties in bounded
degree graphs. Proc. 18th SODA, pages 494-501, 2007.

[12] A. Czumaj and C. Sohler. Testing expansion in bounded
degree graphs. Proc. 48th FOCS, pages 570-578, 2007.

[13] E. Fischer. The art of uninformed decisions: A primer to
property testing. Bulletin of EATCS, 75:97-126, 2001.

[14] O. Goldreich. Combinatorial property testing - a survey.
Randomization Methods in Algorithm Design, 75:45-60,
1998.

[15] O. Goldreich, S. Goldwasser, and D. Ron. Property testing
and its connection to learning and approximation. J. ACM,
45(4):653-750, 1998.

(16]

(17]
(18]

(19]

(20]

(21]

(22]

(23]
[24]
(25]

(26]

(27]

(28]

O. Goldreich and D. Ron. A sublinear bipartite tester for
bounded degree graphs. Combinatorica, 19(3):335-373,
1999.

0. Goldreich and D. Ron. On testing expansion in bounded-
degree graphs. ECCC, TR00-020, 2000.

0. Goldreich and D. Ron. Property testing in bounded de-
gree graphs. Algorithmica, 32(2):302-343, 2002.

S. Kale and C. Seshadhri. Testing expansion in bounded
degree graphs. In Proc. of the 35th ICALP, pages 527-538,
2008.

L. Lovasz and M. Simonovits. The mixing rate of markov
chains, an isoperimetric inequality, and computing the vol-
ume. In Proc. of 31st FOCS, pages 346-354, 1990.

L. Lovasz and P. Winkler. Mixing times. Microsurveys in
Discrete Probability, DIMACS Series in Discrete Math. and
Theor. Comp. Sci., AMS, pages 85-133, 1998.

M. Mihail. Conductance and convergence of markov chains-
a combinatorial treatment of expanders. In Proc. of 30th
FOCS, pages 526-531, 1989.

A. Nachmias and A. Shapira. Testing the expansion of a
graph. ECCC, TR07-118, 2007.

M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property test-
ing and distance approximation. ECCC, TR04-010, 2004.
D. Ron. Property testing. Handbook on Randomization,
11:597-649, 2001.

R. Rubinfeld and M. Sudan. Robust characterizations of
polynomials with applications to program testing. SIAM J.
Comput., 25(2):252-271, 1996.

M. Saks and C. Seshadhri. Parallel monotonicity reconstruc-
tion. Proc. of 19th SODA, pages 962-971, 2008. Full version
is titled “Distributed monotonicity reconstruction”.

A. Sinclair. Improved bounds for mixing rates of markov
chains and multicommodity flow. Combinatorics, Probabil-
ity & Computing, 1:351-370, 1992.

