
NEWTRON: an Efficient Bandit algorithm for Online
Multiclass Prediction

Elad Hazan
Department of Industrial Engineering

Technion - Israel Institute of Technology
Haifa 32000 Israel

ehazan@ie.technion.ac.il

Satyen Kale
Yahoo! Research

4301 Great America Parkway
Santa Clara, CA 95054

skale@yahoo-inc.com

Abstract

We present an efficient algorithm for the problem of online multiclass prediction
with bandit feedback in the fully adversarial setting. We measure its regret with
respect to the log-loss defined in [AR09], which is parameterized by a scalar α.
We prove that the regret of NEWTRON is O(log T) when α is a constant that does
not vary with horizon T , and at mostO(T 2/3) if α is allowed to increase to infinity
with T . For α = O(log T), the regret is bounded byO(

√
T), thus solving the open

problem of [KSST08, AR09]. Our algorithm is based on a novel application of the
online Newton method [HAK07]. We test our algorithm and show it to perform
well in experiments, even when α is a small constant.

1 Introduction

Classification is a fundamental task of machine learning, and is by now well understood in its basic
variants. Unlike the well-studied supervised learning setting, in many recent applications (such as
recommender systems, ad selection algorithms, etc.) we only obtain limited feedback about the true
label of the input (e.g., in recommender systems, we only get feedback on the recommended items).

Several such problems can be cast as online, bandit versions of multiclass prediction problems1. The
general framework, called the “contextual bandits” problem [LZ07], is as follows. In each round,
the learner receives an input x in some high dimensional feature space (the “context”), and produces
an action in response, and obtains an associated reward. The goal is to minimize regret with respect
to a reference class of policies specifying actions for each context.

In this paper, we consider the special case of multiclass prediction, which is a fundamental problem
in this area introduced by Kakade et al [KSST08]. Here, a learner obtains a feature vector, which
is associated with an unknown label y which can take one of k values. Then the learner produces
a prediction of the label, ŷ. In response, only 1 bit of information is given, whether the label is
correct or incorrect. The goal is to design an efficient algorithm that minimizes regret with respect
to a natural reference class of policies: linear predictors. Kakade et al [KSST08] gave an efficient
algorithm, dubbed BANDITRON. Their algorithm attains regret of O(T 2/3) for a natural multiclass
hinge loss, and they ask the question whether a better regret bound is possible. While the EXP4
algorithm [ACBFS03], applied to this setting, has an O(

√
T log T) regret bound, it is highly ineffi-

cient, requiring O(Tn/2) time per iteration, where n is the dimension of the feature space. Ideally,
one would like to match or improve the O(

√
T log T) regret bound of the EXP4 algorithm with an

efficient algorithm (for a suitable loss function).

This question has received considerable attention. In COLT 2009, Abernethy and Rakhlin [AR09]
formulated the open question precisely as minimizing regret for a suitable loss function in the fully

1For the basic bandit classification problem see [DHK07, RTB07, DH06, FKM05, AK08, MB04, AHR08].

1

adversarial setting (and even offered a monetary reward for a resolution of the problem). Some
special cases have been successfully resolved: the original paper of [KSST08], gives a O(

√
T)

bound in the noiseless large-margin case. More recently, Crammer and Gentile [CG11] gave a
O(
√
T log T) regret bound via an efficient algorithm based on the upper confidence bound method

under a semi-adversarial assumption on the labels: they are generated stochastically via a specific
linear model (with unknown parameters which change over time). Yet the general (fully adversarial)
case has been unresolved as of now.

In this paper we address this question and design a novel algorithm for the fully adversarial setting
with its expected regret measured with respect to log-loss function defined in [AR09], which is
parameterized by a scalar α. When α is a constant independent of T , we get a much stronger
guarantee than required by the open problem: the regret is bounded by O(log T). In fact, the regret
is bounded by O(

√
T) even for α = Θ(log T). Our regret bound for larger values of α increases

smoothly to a maximum of O(T 2/3), matching that of BANDITRON in the worst case.

The algorithm is efficient to implement, and it is based on the online Newton method introduced
in [HAK07]; hence we call the new algorithm NEWTRON. We implement the algorithm (and a
faster variant, PNEWTRON) and test it on the same data sets used by Kakade et al [KSST08]. The
experiments show improved performance over the BANDITRON algorithm, even for α as small as 10.

2 Preliminaries

2.1 Notation

Let [k] denote the set of integers {1, 2, . . . , k}, and ∆k ⊆ Rk the set of distributions on [k].

For any Rn, let 1,0 denote the all 1s and all 0s vectors respectively, and let I denote the identity
matrix in Rn×n. For two (row or column) vectors v,w ∈ Rn, we denote by v ·w their usual inner
product, i.e. v ·w =

∑n
i=1 viwi. We denote by ‖v‖ the `2 norm of v. For a vector v ∈ Rn, denote

by diag(v) the diagonal matrix in Rn×n where the ith diagonal entry equals vi.

For a matrix W ∈ Rk×n, denote by W1,W2, . . . ,Wk its rows, which are (row) vectors in Rn.
To avoid defining unnecessary notation, we will interchangeably use W to denote both a matrix in
Rk×n or a (column) vector in Rkn. The vector form of the matrix W is formed by arranging its
rows one after the other, and then taking the transpose (i.e., the vector [W1|W2| · · · |Wk]>). Thus,
for two matrices V and W, V ·W denotes their inner product in their vector form. For i ∈ [n] and
l ∈ [k], denote by Eil the matrix which has 1 in its (i, l)th entry, and 0 everywhere else.

For a matrix W, we denote by ‖W‖ the Frobenius norm of W, which is also the usual `2 norm
of the vector form of W, and so the notation is consistent. Also, we denote by ‖W‖2 the spectral
norm of W, i.e. the largest singular value of W.

For two matrices W and V denote by W⊗V their Kronecker product [HJ91]. For two square sym-
metric matrices W,V of like order, denote by W � V the fact that W−V is positive semidefinite,
i.e. all its eigenvalues are non-negative. A useful fact of the Kronecker product is the following:
if W,V are symmetric matrices such that W � V, and if U is a positive semidefinite symmetric
matrix, then W⊗U � V⊗U. This follows from the fact that if W,U are both symmetric, positive
semidefinite matrices, then so is their Kronecker product W ⊗U.

2.2 Problem setup

Learning proceeds in rounds. In each round t, for t = 1, 2, . . . , T , we are presented a feature vector
xt ∈ X , whereX ⊆ Rn, and ‖x‖ ≤ R for all x ∈ X . HereR is some specified constant. Associated
with xt is an unknown label yt ∈ [k]. We are required to produce a prediction, ŷt ∈ [k], as the label
of xt. In response, we obtain only 1 bit of information: whether ŷt = yt or not. In particular, when
ŷt 6= yt, the identity of yt remains unknown (although one label, ŷt, is ruled out).

The learner’s hypothesis class is parameterized by matrices W ∈ Rk×n with ‖W‖ ≤ D, for some
specified constant D. Denote the set of such matrices by K. Given a matrix W ∈ K with the rows

2

W1,W2, . . . ,Wk, the prediction associated with W for xt is

ŷt = arg max
i∈[k]

Wi · xt.

While ideally we would like to minimize the 0 − 1 loss suffered by the learner, for computational
reasons it is preferable to consider convex loss functions. A natural choice used in Kakade et
al [KSST08] is the multi-class hinge loss:

`(W, (xt, yt)) = max
i∈[k]\yt

[1−Wyt · xt + Wi · xt]+.

Other suitable loss functions `(·, ·) may also be used. The ultimate goal of the learner is to minimize
regret, i.e.

Regret :=

T∑
t=1

`(Wt, (xt, yt))− min
W?∈K

T∑
t=1

`(W?, (xt, yt)).

A different loss function was proposed in an open problem by Abernethy and Rakhlin in COLT
2009 [AR09]. We use this loss function in this paper and define it now.

We choose a constant α which parameterizes the loss function. Given a matrix W ∈ K and an
example (x, y) ∈ X × [k], define the function P : K ×X → ∆k as

P(W,x)i =
exp(αWi · x)∑
j exp(αWj · x)

.

Now let p = P(W,x). Suppose we make our prediction ŷt by sampling from p.

A natural loss function for this scheme is log-loss defined as follows:

`(W, (x, y)) = − 1

α
log(py) = − 1

α
log

(
exp(αWy · x)∑
j exp(αWk · x)

)

= −Wy · x +
1

α
log
(∑

j exp(αWj · x)
)
.

The log-loss is always positive. As α becomes large, this log-loss function has the property that
when the prediction given by W for x is correct, it is very close to zero, and when the prediction is
incorrect, it is roughly proportional to the margin of the incorrect prediction over the correct one.

The algorithm and its analysis depend upon the the gradient and Hessian of the loss function w.r.t.
W. The following lemma derives these quantities (proof in appendix). Note that in the following,
W is to be interpreted as a vector W ∈ Rkn.

Lemma 1. Fix a matrix W ∈ K and an example (x, y) ∈ X × [k], and let p = P(W,x). Then we
have

∇`(W, (x, y)) = (p− ey)⊗ x and ∇2`(W, (x, y)) = α(diag(p)− pp>)⊗ xx>.

In the analysis, we need bounds on the smallest non-zero eigenvalue of the (diag(p)− pp>) factor
of the Hessian. Such bounds are given in the appendix. For the sake of the analysis, however, the
matrix inequality given in Lemma 2 below suffices. It is given in terms of a parameter δ, which is
the minimum probability of a label in any distribution P(W,x).

Definition 1. Define δ := minW∈K,x∈X mini P(W,x)i.

We have the following (loose) bound on δ, which follows easily using the fact that |Wi ·x| ≤ RD:

δ ≥ exp(−2αRD)/k. (1)

Lemma 2. Let W ∈ K be any weight matrix, and let H ∈ Rk×k be any symmetric matrix such that
H1 = 0. Then we have

∇2`(W, (x, y)) � αδ

‖H‖2
H⊗ xx>.

3

Algorithm 1 NEWTRON. Parameters: β, γ
1: Initialize W′

1 = 0.
2: for t = 1 to T do
3: Obtain the example xt.
4: Let pt = P(W′

t,xt), and set p′t = (1− γ) · pt + γ
k1.

5: Output the label ŷt by sampling from p′t. This is equivalent to playing Wt = W′
t with

probability (1− γ), and Wt = 0 with probability γ.
6: Obtain feedback, i.e. whether ŷt = yt or not.
7: if ŷt = yt then
8: Define ∇̃t := 1−pt(yt)

p′t(yt)
·
(
1
k1− eyt

)
⊗ xt and κt := p′t(yt).

9: else
10: Define ∇̃t := pt(ŷt)

p′t(ŷt)
·
(
eŷt − 1

k1
)
⊗ xt and κt := 1.

11: end if
12: Define the cost function

ft(W) := ∇̃t · (W −W′
t) +

1

2
κtβ(∇̃t · (W −W′

t))
2. (2)

13: Compute

W′
t+1 := arg min

W∈K

t∑
τ=1

ft(W) +
1

2D
‖W‖2. (3)

14: end for

2.3 The FTAL Lemma

Our algorithm is based on the FTAL algorithm [HAK07]. This algorithm is an online version of
the Newton step algorithm in offline optimization. The following lemma specifies the algorithm,
specialized to our setting, and gives its regret bound. The proof is in the appendix.

Lemma 3. Consider an online convex optimization problem over some convex, compact domain
K ⊆ Rn of diameter D with cost functions ft(w) = (vt ·w − αt) + 1

2βt(vt ·w − αt)
2, where the

vector vt ∈ Rn and scalars αt, βt are chosen by the adversary such that for some known parameters
r, a, b, we have ‖vt‖ ≤ r, βt ≥ a, and |βt(vt ·w − αt)| ≤ b, for all w ∈ K. Then the algorithm
that, in round t, plays

wt := arg min
w∈K

t−1∑
τ=1

ft(w)

has regret bounded by O(nb
2

a log(DraTb)).

3 The NEWTRON algorithm

Our algorithm for bandit multiclass learning algorithm, dubbed NEWTRON, is shown as Algorithm 1
above. In each iteration, we randomly choose a label from the distribution specified by the current
weight matrix on the current example mixed with the uniform distribution over labels specified by
an exploration parameter γ. The parameter γ (which is similar to the exploration parameter used
in the EXP3 algorithm of [ACBFS03]) is eventually tuned based on the value of the parameter α
in the loss function (see Corollary 5). We then use the observed feedback to construct a quadratic
loss function (which is strongly convex) that lower bounds the true loss function in expectation (see
Lemma 7) and thus allows us to bound the regret. To do this we construct a randomized estimator
∇̃t for the gradient of the loss function at the current weight matrix. Furthermore, we also choose a
parameter κt, which is an adjustment factor for the strongly convexity of the quadratic loss function
ensuring that its expectation lower bounds the true loss function. Finally, we compute the new loss
matrix using a Follow-The-Regularized-Leader strategy, by minimizing the sum of all quadratic loss
functions so far with `2 regularization. As described in [HAK07], this convex program can be solved
in quadratic time, plus a projection on K in the norm induced by the Hessian.

4

Statement and discussion of main theorem. To simplify notation, define the function `t : K → R
as `t(W) = `(W, (xt, yt)). Let Et[·] denote the conditional expectation with respect to the σ-field
Ft, where Ft is the smallest σ-field with respect to which the predictions ŷk, for k = 1, 2, . . . , t−1,
are measurable.

With this notation, we can state our main theorem giving the regret bound:
Theorem 4. Given α, δ and γ ≤ 1

2 , suppose we set β ≤ min{αδ10 + η, 1
4RD} in the NEWTRON

algorithm, for η = γ log(k)
20αR2D2 . Let ν = max{ δ2 ,

γ
k}. The NEWTRON algorithm has the following

bound on the expected regret:

T∑
t=1

E[`t(Wt)]− `t(W?) = O
(
kn
νβ log T + γ log(k)

α T
)

Before giving the proof theorem 4, we first state a corollary (a simple optimization of parameters,
proved in the appendix) which shows how γ in Theorem 4 can be set appropriately to get a smooth
interpolation between O(log(T)) and O(T 2/3) regret based on the value of α.
Corollary 5. Given α, there is a setting of γ so that the regret of NEWTRON is bounded by

min

{
c
exp(4αRD)

α
log(T), 6cRDT 2/3

}
,

where the constant c = O(k3n) is independent of α.

Discussion of the bound. The parameter α is inherent to the log-loss function as defined in
[AR09]. Our main result as given in Corollary 5 which entails logarithmic regret for constant α,
contains a constant which depends exponentially on α. Empirically, it seems that α can be set to a
small constant, say 10 (see Section 4), and still have good performance.

Note that even when α grows with T , as long as α ≤ 1
8RD log(T), the regret can be bounded as

O(cRD
√
T), thus solving the open problem of [KSST08, AR09] for log-loss functions with this

range of α.

We can say something even stronger - our results provide a “safety net” - no matter what the value
of α is, the regret of our algorithm is never worse than O(T 2/3), matching the bound of the BAN-
DITRON algorithm (although the latter holds for the multiclass hinge loss).

Analysis.

Proof. (Theorem 4.) The optimization (3) is essentially running the algorithm from Lemma 3 on
K with the cost functions ft(W), with additional nk initial fictitious cost functions 1

2D (Eil ·W)2

for i ∈ [n] and l ∈ [k]. These fictitious cost functions can be thought of as regularization. While
technically these fictitious cost functions are not necessary to prove our regret bound, we include
them since this seems to give better experimental performance and only adds a constant to the regret.

We now apply the regret bound of Lemma 3 by estimating the parameters r, a, b. This is a simple
technical calculation and done in Lemma 6 below, which yields the values r = R

ν , a = βν, b = 1.
Hence, the regret bound of Lemma 3 implies that for any W? ∈ K,

T∑
t=1

ft(W
′
t)− ft(W?) = O

(
kn
νβ log T

)
.

Note that the bound above excludes the fictitious cost functions since they only add a constant addi-
tive term to the regret, which is absorbed by the O(log T) term. Similarly, we have also suppressed
additive constants arising from the log(DraTb) term in the regret bound of Lemma 3.

Taking expectation on both sides of the above bound with respect to the randomness in the algorithm,
and using the specification (2) of ft(W) we get

E
[
∇̃t · (W′

t −W?)− 1

2
κtβ(∇̃t · (W′

t −W?))2
]

= O
(
kn
νβ log T

)
. (4)

5

By Lemma 7 below, we get that

`t(W
′
t)− `t(W?) ≤ E

t

[
∇̃t · (W′

t −W?)− 1

2
κtβ(∇̃t · (W′

t −W?))2
]

+ 20ηR2D2. (5)

Furthermore, we have
E
t
[`t(Wt)]− `(W′

t) ≤
γ log(k)

α , (6)

since Wt = W′
t with probability (1 − γ) and Wt = 0 with probability γ, and `t(0) = log(k)

α .
Plugging (5) and (6) in (4), and using η = γ log(k)

20αR2D2 ,

T∑
t=1

E[`(Wt)]− `(W?) = O
(
kn
νβ log T + γ log(k)

α T
)
.

We now state two lemmas that were used in the proof of Theorem 4. The first one (proof in the
appendix) obtains parameter settings to use Lemma 3 in Theorem 4.
Lemma 6. Assume β ≤ 1

4RD and γ ≤ 1
2 . Let ν = max{ δ2 ,

γ
k}. Then the following are valid

settings for the parameters r, a, b: r = R
ν , a = βν and b = 1.

The next lemma shows that in each round, the expected regret of the inner FTAL algorithm with ft
cost functions is larger than the regret of NEWTRON.
Lemma 7. For β = αδ

10 + η and γ ≤ 1
2 , we have

`t(W
′
t)− `t(W?) ≤ E

t

[
∇̃t · (W′

t −W?)− 1

2
κtβ(∇̃t · (W′

t −W?))2
]

+ 20ηR2D2.

Proof. The intuition behind the proof is the following. We show that Et[∇̃t] = (p − eyt) ⊗ xt,

which by Lemma 1 equals ∇`t(W′
t). Next, we show that Et[κt∇̃t∇̃

>
t] = Ht ⊗ xtx

>
t for some

matrix Ht s.t. Ht1 = 0. By upper bounding ‖Ht‖, we then show (using Lemma 2) that for any
Ψ ∈ K we have

∇2`t(Ψ) � βHt ⊗ xtx
>
t .

The stated bound then follows by an application of Taylor’s theorem.

The technical details for the proof are as follows. First, note that

E
t
[∇̃t · (W′

t −W?)] = E
t
[∇̃t] · (W′

t −W?). (7)

We now compute Et[∇̃t].

E
t
[∇̃t] =

p′t(yt) · 1− pt(yt)
p′t(yt)

·
(

1

k
1− eyt

)
+
∑
y 6=yt

p′t(y) · pt(y)

p′t(y)
·
(

eŷt −
1

k
1

)⊗ xt

= (pt − eyt)⊗ xt. (8)

Next, we have

E
t
[κt(∇̃t · (W′

t −W?))2] = (W′
t −W?)> E

t
[κt∇̃t∇̃

>
t](W′

t −W?). (9)

We now compute Et[κt∇̃t∇̃
>
t].

E
t
[κt∇̃t∇̃

>
t] =

[
p′t(yt) · κt

(
1− pt(yt)
p′t(yt)

)2

·
(

1

k
1− eyt

)(
1

k
1− eyt

)>

+
∑
y 6=yt

p′t(y) ·
(
pt(y)

p′t(y)

)2

·
(

ey −
1

k
1

)(
ey −

1

k
1

)>⊗ xtx
>
t

=: Ht ⊗ xtx
>
t , (10)

6

where Ht is the matrix in the brackets above. We note a few facts about Ht. First, note that
(ey − 1

k1) · 1 = 0, and so Ht1 = 0. Next, the spectral norm (i.e. largest eigenvalue) of Ht is
bounded as:

‖Ht‖2 ≤
∥∥ 1
k1− eyt

∥∥2 +
∑
y 6=yt

p′t(y)
1

(1− γ)2
∥∥ey − 1

k1
∥∥2 ≤ 10,

for γ ≤ 1
2 . Now, for any Ψ ∈ K, by Lemma 2, for the specified value of β we have

∇2`t(Ψ) � αδ

10
Ht ⊗ xtx

>
t . (11)

Now, by Taylor’s theorem, for some Ψ on the line segment connecting W′
t to W?, we have

`t(W
?)−`t(W′

t) = ∇`t(W′
t) · (W? −W′

t) +
1

2
(W? −W′

t)
>[∇2`t(Ψ)](W? −W′

t),

≥ ((pt − eyt)⊗ xt) · (W? −W′
t) +

1

2
(W? −W′

t)
>[
αδ

10
Ht ⊗ xtx

>
t](W? −W′

t),

(12)
where the last inequality follows from (11). Finally, we have

1

2
(W?−W′

t)
>[ηHt⊗xtx

>
t](W?−W′

t) ≤
1

2
η‖Ht⊗xtx

>
t ‖2‖W?−W′

t‖2 ≤ 20ηR2D2, (13)

since ‖W? −W′
t‖ ≤ 2D. Adding inequalities (12) and (13), rearranging the result and using (7),

(8), (9), and (10) gives the stated bound.

4 Experiments

While the theoretical regret bound for NEWTRON isO(log T) when α = O(1), the provable constant
in O(·) notation is quite large, leading one to question the practical performance of the algorithm.
The main reason for the large constant is that the analysis requires the β parameter to be set ex-
tremely small to get the required bounds. In practice, however, one can keep β a tunable parameter
and try using larger values. In this section, we give experimental evidence (replicating the exper-
iments of [KSST08]) that shows that the practical performance of the algorithm is quite good for
small values of α (like 10), and not too small values of β (like 0.01, 0.0001).

Data sets. We used three data sets from [KSST08]: SYNSEP, SYNNONSEP, and REUTERS4. The
first two, SYNSEP and SYNNONSEP, are synthetic data sets, generated according to the description
given in [KSST08]. These data sets have the same 106 feature vectors with 400 features. There are
9 possible labels. The data set SYNSEP is linearly separable, whereas the data set SYNNONSEP is
made inseparable by artificially adding 5% label noise. The REUTERS4 data set is generated from
the Reuters RCV1 corpus. There are 673, 768 documents in the data set with 4 possible labels, and
346, 810 features. Our results are reported by averaging over 10 runs of the algorithm involved.

Algorithms. We implemented the BANDITRON and NEWTRON algorithms2. The NEWTRON al-
gorithm is significantly slower than BANDITRON due to its quadratic running time. This makes it
infeasible for really large data sets like REUTERS4. To surmount this problem, we implemented
an approximate version of NEWTRON, called PNEWTRON3, which runs in linear time per iteration
and thus has comparable speed to BANDITRON. PNEWTRON does not have the same regret guaran-
tees of NEWTRON however. To derive PNEWTRON, we can restate NEWTRON equivalently as (see
[HAK07]):

W′
t = arg min

W∈K
(W −W′′

t)>At(W −W′′
t)

where W′′
t = −A−1t bt, for At = 1

D I+
∑t−1
τ=1 κτβ∇̃τ∇̃

>
τ and bt =

∑t−1
τ=1(1−κτβ∇̃τ ·Wτ)∇̃τ .

PNEWTRON makes the following change, using the diagonal approximation for the Hessian, and
usual Euclidean projections:

W′
t = arg min

W∈K
(W −W′′

t)>(W −W′′
t)

2We did not implement the Confidit algorithm of [CG11] since our aim was to consider algorithms in the
fully adversarial setting.

3Short for pseudo-NEWTRON. The “P” may be left silent so that it’s almost NEWTRON, but not quite.

7

where W′′
t = −A−1t bt, for At = 1

D I +
∑t−1
τ=1 diag(κτβ∇̃τ∇̃

>
τ) and bt is the same as before,

bt =
∑t−1
τ=1(1− κτβ∇̃τ ·Wτ)∇̃τ .

Parameter settings. In our experiments, we chose K to be the unit `2 ball in Rkn, so D = 1. We
also choose α = 10 for all experiments in the log-loss. For BANDITRON, we chose the value of
γ specified in [KSST08]: γ = 0.014, 0.006 and 0.05 for SYNSEP, SYNNONSEP and REUTERS4
respectively. For NEWTRON and PNEWTRON, we chose γ = 0.01, 0.006 and 0.05 respectively. The
other parameter for NEWTRON and PNEWTRON, β, was set to the values β = 0.01, 0.01, and 0.0001
respectively. We did not tune any of the parameters α, β and γ for NEWTRON or PNEWTRON.

10
2

10
3

10
4

10
−0.8

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

SynNonSep: number of examples

er
ro

r
ra

te

Banditron
Newtron
PNewtron

Figure 1: Log-log plots of error
rates vs. number of examples
for BANDITRON, NEWTRON
and PNEWTRON on SYNNON-
SEP with 104 examples.

Evaluation. We evaluated the algorithms in terms of their error
rate, i.e. the fraction of prediction mistakes made as a function
of time. Experimentally, PNEWTRON has quite similar perfor-
mance to NEWTRON, but is significantly faster. Figure 4 shows
how BANDITRON, NEWTRON and PNEWTRON compare on the
SYNNONSEP data set for 104 examples4. It can be seen that
PNEWTRON has similar behavior to NEWTRON, and is not much
worse.

The rest of the experiments were conducted using only BAN-
DITRON and PNEWTRON. The results are shown in figure 4. It
can be clearly seen that PNEWTRON decreases the error rate much
faster than BANDITRON. For the SYNSEP data set, PNEWTRON
very rapidly converges to the lowest possible error rate due to
setting the exploration parameter γ = 0.01, viz. 0.01 × 8/9 =
0.89%. In comparison, the final error for BANDITRON is 1.91%.
For the SYNNONSEP data set, PNEWTRON converges rapidly to
its final value of 11.94%. BANDITRON remains at a high error
level until about 104 examples, and at the very end catches up
with and does slightly better than PNEWTRON, ending at 11.47%.
For the REUTERS4 data set, both BANDITRON and PNEWTRON
decrease the error rate at roughly same pace; however PNEWTRON still obtains better performance
consistently by a few percentage points. In our experiments, the final error rate for PNEWTRON is
13.08%, while that for BANDITRON is 18.10%.

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

SynSep: number of examples

er
ro

r
ra

te

Banditron
PNewtron

10
2

10
3

10
4

10
5

10
6

10
−0.9

10
−0.8

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

SynNonSep: number of examples

er
ro

r
ra

te

Banditron
PNewtron

10
2

10
3

10
4

10
5

10
6

10
−0.8

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

Reuters4: number of examples

E
rr

or
 r

at
e

Banditron
PNewtron

Figure 2: Log-log plots of error rates vs. number of examples for BANDITRON and PNEWTRON on
different data sets. Left: SYNSEP. Middle: SYNNONSEP. Right: REUTERS4.

5 Future Work

Some interesting questions remain open. Our theoretical guarantee applies only to the quadratic-
time NEWTRON algorithm. Is it possible to obtain similar regret guarantees for a linear time algo-
rithm? Our regret bound has an exponentially large constant, which depends on the loss functions
parameters. Does there exist an algorithm with similar regret guarantees but better constants?

4In the interest of reducing running time for NEWTRON, we used a smaller data set.

8

References

[ACBFS03] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The non-
stochastic multiarmed bandit problem. SIAM J. Comput., 32:48–77, January 2003.

[AHR08] Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An
efficient algorithm for bandit linear optimization. In COLT, pages 263–274, 2008.

[AK08] Baruch Awerbuch and Robert Kleinberg. Online linear optimization and adaptive rout-
ing. J. Comput. Syst. Sci., 74(1):97–114, 2008.

[AR09] Jacob Abernethy and Alexander Rakhlin. An efficient bandit algorithm for
√
T -regret

in online multiclass prediction? In COLT, 2009.

[CG11] Koby Crammer and Claudio Gentile. Multiclass classification with bandit feedback
using adaptive regularization. In ICML, 2011.

[DH06] Varsha Dani and Thomas P. Hayes. Robbing the bandit: less regret in online geometric
optimization against an adaptive adversary. In SODA, pages 937–943, 2006.

[DHK07] Varsha Dani, Thomas Hayes, and Sham Kakade. The price of bandit information for
online optimization. In NIPS. 2007.

[FKM05] Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online convex
optimization in the bandit setting: gradient descent without a gradient. In SODA, pages
385–394, 2005.

[HAK07] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online
convex optimization. Machine Learning, 69(2-3):169–192, 2007.

[HJ91] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press,
Cambridge, 1991.

[KSST08] Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Efficient bandit algorithms
for online multiclass prediction. In ICML’08, pages 440–447, 2008.

[LZ07] John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits
with side information. In NIPS, 2007.

[MB04] H. Brendan McMahan and Avrim Blum. Online geometric optimization in the bandit
setting against an adaptive adversary. In COLT, pages 109–123, 2004.

[RTB07] Alexander Rakhlin, Ambuj Tewari, and Peter Bartlett. Closing the gap between bandit
and full-information online optimization: High-probability regret bound. Technical
Report UCB/EECS-2007-109, EECS Department, University of California, Berkeley,
Aug 2007.

A Properties of the log-loss function

First, we restate and prove Lemma 1. This lemma gives the precise derivations of the gradient and
Hessian of the loss function.

Lemma 8. Fix a matrix W ∈ K and an example (x, y) ∈ X × [k], and let p = P(W,x). Then we
have

∇`(W, (x, y)) = (p− ey)⊗ x and ∇2`(W, (x, y)) = α(diag(p)− pp>)⊗ xx>.

Proof. For convenience, define hk = exp(αWi · x). Also define Z =
∑
j hj , so that pi = hi/Z.

Note the following:
∂hj
∂Wil

=

{
αhjxl if i = j

0 otherwise

Using this, we now compute the gradient of `(W, (x, y)):

∂`

∂Wil
=

{
pyxl − xl if i = y

pixl otherwise

9

The gradient can be succinctly written as the following using the Kronecker product:

∇` = (p− ey)⊗ x.

Now we compute the Hessian:

∂2`

∂WilWi′l′
=

{
−αpipi′xlxl′ if i 6= i′

α(pi − p2i)xlxl′ if i = i′

Again this can be written succinctly using the Kronecker product. Consider the Laplacian matrix L
of a complete weighted graph on the k labels, where the weight of edge {i, j} is pipj . This can be
written as

L = diag(p)− pp>.

Then the Hessian is
∇2` = αL⊗ xx>.

The next lemma gives a lower bound for the smallest non-zero eigenvalue of the Hessian.

Lemma 9. The nullspace of L is spanned by 1, the all 1’s vector. Furthermore, the smallest non-zero
eigenvalue of L is at least pmin, where pmin = mini pi.

Proof. We can rewrite L as

L = diag(p)1/2(I−√p
√

p
>

)diag(p)1/2,

where
√

p = diag(p)1/21. Note that
√

p is a unit vector; hence the matrix I−√p
√

p> has exactly
one zero eigenvalue (corresponding to

√
p), and all other eigenvalues are 1, corresponding to a basis

of the n − 1 dimensional orthogonal complement of
√

p. This implies that L also has exactly one
zero eigenvalue correspoding to diag(p)−1/2

√
p = 1.

Now, to lower bound the smallest non-zero eigenvalue of L, let v be any unit vector orthogonal to
1, and we now lower bound v>Lv by pmin. Define the vector p′ = p − pmin1. Note that p′ has
non-negative coordinates which sum to at most 1, and define

√
p′ = diag(p′)1/21. We have

v>Lv =
∑
i

v2i pi − (
∑
i

vipi)
2

=
∑
i

v2i pmin +
∑
i

v2i p
′
i −

(∑
i

vipmin +
∑
i

vip
′
i

)2

= pmin +
∑
i

v2i p
′
i −

(∑
i

vip
′
i

)2

because
∑
i vi = 0 since v is orthogonal to 1. Next, we have

∑
i

v2i p
′
i −

(∑
i

vip
′
i

)2

= v>diag(p′)1/2(I−
√

p′
√

p′
>

)diag(p′)1/2v ≥ 0,

since diag(p′)1/2 and I−
√

p′
√

p′
> are both positive semidefinite matrices: the latter because

√
p′

has norm at most 1. Thus we conclude that v>Lv ≥ pmin as required.

We can now restate and prove Lemma 2 as a simple corollary of Lemma 9.

Lemma 10. Let W ∈ K be any weight matrix, and let H ∈ Rk×k be any symmetric matrix such
that H1 = 0. Then we have

∇2`(W, (x, y)) � αδ

‖H‖2
H⊗ xx>.

Proof. Let p = P(W,x). Then by Lemma 1, we have

∇2`(W, (x, y)) = αL⊗ xx>,

10

where L = (diag(p)−pp>). By Lemma 9, we have that the smallest non-zero eigenvalue of L is at
least δ, and has only one zero eigenvalue with eigenvector 1. Now we show that L � δ

‖H‖2 H, using
the fact that H1 = 0. This would imply the stated inequality since xx> is a positive semidefinite
matrix.

So let v ∈ Rk be any vector, and let v = w + η1, where w ·1 = 0 and η = 1
k (v ·1). Then we have

v>Lv = (w + η1)>L(w + η1) = w>Lw ≥ δw>w,

since L · 1 = 0 and w · 1 = 0. Next, we have

v>Lv = (w + η1)>H(w + η1) = w>Hw ≤ ‖H‖2w>w,

since H · 1 = 0. Thus, we get v>Lv ≥ δ
‖H‖2 v>Hv as required.

B Proof of main lemmas

B.1 The FTAL lemma

Our algorithm is based on the FTAL algorithm [HAK07]. This algorithm is an online version of the
Newton step algorithm in offline optimization. We prove Lemma 3 by the following theorem:

Theorem 1 (Theorem 5 from [HAK07]). Consider an online convex optimization problem over
some convex, compact domain K ⊆ Rn of diameter D with the cost functions ft : K → Rn.
Suppose the cost functions can be written as ft(w) = gt(vt · w) for a univariate convex function
gt : R → R and some vector vt ∈ Rn chosen by the adversary. Assume that for some known
parameters r, a, b > 0, we have ‖vt‖ ≤ r, and for all w ∈ K, we have |g′t(vt · w)| ≤ b and
g′′t (vt ·w) ≥ a. Then the algorithm that, in round t, plays

wt := arg min
w∈K

t−1∑
τ=1

ft(w),

has regret bounded by 2nb2

a (log(DraTb) + 1).

As a corollary we obtain Lemma 3, which we restate and prove now:

Lemma 11. Consider an online convex optimization problem over some convex, compact domain
K ⊆ Rn of diameter D with cost functions

ft(w) = (vt ·w − αt) +
1

2
βt(vt ·w − αt)2,

where the vector vt ∈ Rn and scalars αt, βt are chosen by the adversary such that for some known
parameters r, a, b, we have ‖vt‖ ≤ r, βt ≥ a, and |βt(vt ·w − αt)| ≤ b, for all w ∈ K. Then the
algorithm that, in round t, plays

wt := arg min
w∈K

t−1∑
τ=1

ft(w)

has regret bounded by O(nb
2

a log(DraTb)).

Proof. We apply Theorem 1. The functions ft can be written as ft(vt ·w) = gt(x), where gt : R→
R is the univariate function defined as

gt(x) := (x− αt) +
1

2
βt(x− αt)2

For these functions we have |g′t(vt ·w)| = |1 + βt(vt ·w− αt)| ≤ b+ 1 and g′′t (vt ·w) = βt ≥ a
by assumption. The regret bound follows by plugging these parameters in Theorem 1.

11

B.2 Proof of Lemma 6

We now restate and prove Lemma 6:
Lemma 12. Assume β ≤ 1

4RD and γ ≤ 1
2 . Let ν = max{ δ2 ,

γ
k}. Then the following are valid

settings for the parameters r, a, b:

r =
R

ν
, a = βν, and b = 1.

Proof. The proof is just a technical calculation.

• First, parameter r: for the ft functions, we have vt = ∇̃t, and we can bound

‖∇̃t‖ ≤
1

miny p′t(y)
·max

y

∥∥∥∥ey − 1

k

∥∥∥∥ · ‖xt‖ ≤ R

ν
,

since p′t(y) ≥ (1− γ)δ + γ
k ≥ ν if γ ≤ 1

2 . For the fictitious cost functions, vt = Eil, and
we have ‖Eil‖ = 1, hence the upper bound on r above suffices.

• Next, parameter a: for the ft functions, we have

βt = κtβ ≥ min
t
p′t(yt)β ≥ βν,

since p′t(yt) ≥ ν just like before. For the fictitious cost functions, we have βt = 1
D ≥ βν.

So we can set a = βν.

• Finally, parameter b: for the ft functions, we have

|κtβ∇̃t · (W −W′
t))| ≤ κtβ‖∇̃t‖‖W −W′

t‖ ≤ 2κtβ‖∇̃t‖D.
since ‖W −W′

t‖ ≤ 2D. If ŷt = yt, then

κt‖∇̃t‖ =

∥∥∥∥1

k
1− eyt

∥∥∥∥ ‖xt‖ ≤ 2R.

If ŷt 6= yt, then

‖∇̃t‖ ≤
pt(ŷt)

p′t(ŷt)
R ≤ 1

1− γ
R ≤ 2R,

since γ ≤ 1
2 . In either case, we have

|κtβ∇̃t · (W −W′
t))| ≤ 4βRD ≤ 1,

since β ≤ 1
4RD . For the fictitious cost functions, we have | 1DWil| ≤ 1. So we can set

b = 1.

B.3 Proof of Corollary 5

We now restate and prove Corollary 5.
Corollary 13. Given α, there is a setting of γ so that the regret of NEWTRON is bounded by

min

{
c
exp(4αRD)

α
log(T), 6cRDT 2/3

}
,

where the constant c = O(k3n) is independent of α.

Proof. We set γ based on how large α is. If α ≤ 1
6RD log(T), then by (1) we have δ ≥

exp(−2αRD)/k ≥ T−1/3/k. We can then set γ = 1
T , giving ν = δ/2, and since β = Ω(αδ),

the regret bound of Theorem 4 becomes

O
(
kn
αδ2 log(T)

)
= c

exp(4αRD)

α
log(T),

12

when the hidden constant in c = O(k3n) is taken large enough.

If α > 1
6RD log(T), we choose γ =

(
k2nR2D2α2 log(T)

log2(k)T

)1/3
. Using the bounds ν ≥ γ

k and β ≥

Ω(η) = Ω(γ log(k)
αR2D2), in Theorem 4, we get a regret bound of

O

((
k2n log(k)R2D2

α

)1/3
T 2/3 log1/3(T)

)
= cRDT 2/3,

when the hidden constant in c = O(k3n) is taken large enough. Here we used the fact that α >
1

6RD log(T). Note that when α = 1
6RD log(T), the two bounds in the minimum are equal.

13

	Introduction
	Preliminaries
	Notation
	Problem setup
	The FTAL Lemma

	The Newtron algorithm
	Experiments
	Future Work
	Properties of the log-loss function
	Proof of main lemmas
	The FTAL lemma
	Proof of Lemma 6
	Proof of Corollary 5

